Loading [MathJax]/jax/element/mml/optable/Latin1Supplement.js

数学物理学报, 2020, 40(1): 156-168 doi:

论文

加权的退化椭圆系统稳定解的Liouville定理

吴千秋, 胡良根,

Liouville Type Theorems for Stable Solutions of the Degenerate Elliptic System with Weight

Wu Qianqiu, Hu Lianggen,

通讯作者: 胡良根, E-mail: hulianggen@tom.com

收稿日期: 2018-05-8  

基金资助: 浙江省自然科学基金.  LY17A010007
宁波市自然科学基金.  2018A610194

Received: 2018-05-8  

Fund supported: the Natural Science Foundation of Zhejiang Province.  LY17A010007
the Natural Science Foundation of Ningbo.  2018A610194

摘要

该文研究了加权的退化椭圆系统

{ΔGu=ω(x)v,ΔGv=ω(x)uq,RN=RN1×RN2,

其中ΔGu=Δxu+(a+1)2|x|2aΔyu是Grushin算子, a,β0, q>1, ω(x)=(1+x2(a+1))β2(a+1).超临界指数正稳定解的Liouville定理被建立.

关键词: Grushin算子 ; 稳定解 ; Liouville定理 ; Bootstrap方法

Abstract

We study the degenerate elliptic system with weight

{ΔGu=ω(x)v,ΔGv=ω(x)uq,in RN=RN1×RN2,

where ΔGu=Δxu+(a+1)2|x|2aΔyu is the Grushin operator, a,β0, q>1, ω(x)=(1+x2(a+1))β2(a+1). Liouville type results for positive stable solutions in the supercritical exponent are established.

Keywords: Grushin operator ; Stable solution ; Liouville theorem ; Bootstrap method

PDF (350KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

吴千秋, 胡良根. 加权的退化椭圆系统稳定解的Liouville定理. 数学物理学报[J], 2020, 40(1): 156-168 doi:

Wu Qianqiu, Hu Lianggen. Liouville Type Theorems for Stable Solutions of the Degenerate Elliptic System with Weight. Acta Mathematica Scientia[J], 2020, 40(1): 156-168 doi:

1 引言

本文考虑加权的退化椭圆系统

{ΔGu=ω(x)v,ΔGv=ω(x)uq,RN=RN1×RN2,
(1.1)

其中q>1, a,β0, x=(x,y)RN1×RN2, ω(x)=(1+x2(a+1))β2(a+1).本文建立椭圆系统(1.1)正稳定解的Liouville定理,即证明系统(1.1)正稳定解的非存在性结果.这里Grushin算子(Grushin梯度)定义为

ΔGu=Δxu+(a+1)2|x|2aΔyu (Gu=(xu,(a+1)|x|ayu)),

Grushin距离定义为x=(|x|2(a+1)+|y|2)12(a+1).

首先,可以注意到a=0的情况, Grushin算子是拉普拉斯算子.则椭圆系统(1.1)是Lane-Emden方程或者Lane-Emden系统,这类方程和系统已经被许多专家讨论. 2007年, Farina[1]通过巧妙地运用Morse迭代考虑了Lane-Emden方程

Δu=|u|q1u,ΩRN,
(1.2)

给出了该方程有限Morse指标解(正解或者变号解)的完全分类.为了解决双调和方程Δ2u=|u|q1u稳定解和有限Morse指标解的完整分类, Daˊvila-Dupaigne-Wang-Wei[2]通过构造单调公式,将方程非平凡解的不存在性转化为非平凡齐次解的不存在性,从而得到相应的结果.

然而,上面所说的两种方法对于一些加权椭圆系统解的定性分析无效. Cowan-Ghoussoub[3]和Dupaigne等[4]各自独立的提出的一种方法能处理Lane-Emden系统和加权椭圆系统.如,基于联合使用Bootstrap方法、Souplet不等式[5]和稳定解的准则, Hajlaoui-Harrabi-Ye[6]和Hu-Zeng[7]建立了 a = 0 的加权Lane-Emden系统(1.1)稳定解的Liouville型定理.

对于 a = 1 的情况,问题(1.2)与Heisenberg Laplace方程

-\Delta_{H} u = f(u), \quad (z, t)\in{\Bbb H}^N = {\Bbb C}^n \times {{\Bbb R}}

密切相关,其中 \Delta_{H} 是Heisenberg Laplace算子.设 u 是关于 z 的径向函数,即 u = u(|z|, t) . \Delta_{H} u = \Delta_{z} u+4|z|^2 \frac{\partial ^2u}{\partial t^2} a = 1 时的Grushin算子.对于含Heisenberg Laplace算子的椭圆方程的Liouville定理和对称性质已有了很多优秀的成果,参见文献[8-11].

现在考虑 a > 0 的一般情况, Grushin算子相应性质已被许多专家讨论[12-13].最近,运用Kelvin变换结合移动平面法, Monticelli[14]证明了方程 -\Delta_{G}u = u^{q} 非负经典解的Liouville定理成立, Yu[15]用同样的方法得到了上述方程非负弱解的Liouville定理.这里指数满足 q < \frac{N_{a}+2}{N_{a}-2} ,其中 N_{a}: = N_{1}+(a+1)N_{2} 称为齐次维数.

近年来,含Grushin算子的椭圆型方程或系统的稳定解与有限Morse指标解已被许多专家研究(参见文献[16-17]).利用Cowan[18]的方法, Duong等[16]得到了含Grushin算子的Lane-Emden系统

\left\{\begin{array}{ll} -\Delta_G u = v^p, \\ -\Delta_G v = u^q, \end{array}\right.\quad {{\Bbb R}} ^N = {{\Bbb R}} ^{N_1}\times {{\Bbb R}} ^{N_2}

稳定解的Liouville定理.

受文Montenegro[19]启发,下面给出稳定解的定义.

定义1.1  设 \Omega {{\Bbb R}} ^N 的子集.系统(1.1)的解 (u, v)\in C^2(\Omega)\times C^2(\Omega) 称为稳定的,如果特征值问题

\begin{equation} \left\{\begin{array}{ll} \begin{array}{ll} -\Delta_{G} \phi = \omega\psi+\mathfrak{e}\phi, \\ -\Delta_{G} \psi = q\omega u^{q-1}\phi+\mathfrak{e}\psi, \end{array} & \;\ x \in \Omega, \\ \phi = \psi = 0, & \quad \ \partial \Omega \end{array}\right. \end{equation}
(1.3)

存在第一特征值 \mathfrak{e} > 0 和正的光滑特征函数对 (\phi, \psi) .

可以注意到, Grushin算子 \Delta_{G} 是非对称的且在 \{ 0 \} \times {{\Bbb R}} ^{N_2} 流行上是退化的,从而拉普拉斯算子的研究方法对Grushin算子不适用.本文需要克服由Grushin算子引起的一些新困难(如积分估计和建立解 (u, v) 比较原理等).受文献[7, 16, 20]的启发,本文将证明加权的退化椭圆系统(1.1)解的Liouville型定理.

定理1.1  设 u, v 是系统(1.1)的正稳定解.如果 N_{a}, q > 1 \beta\geq0 满足条件

\begin{equation} N_{a} < 2+\left [4+\beta+\frac{4(\beta+2)}{q-1}\right ]\frac{\kappa_{0}}{2}, \end{equation}
(1.4)

其中 \kappa_{0} 是方程

\begin{equation} {\cal L} (q, \kappa): = \kappa^4-\frac{32q}{q+1}\kappa^2+\frac{32q(q+3)}{(q+1)^2}\kappa-\frac{64q}{(q+1)^2} = 0 \end{equation}
(1.5)

的最大根.则系统(1.1)没有正稳定解.

注1.1  (1)使用稳定解准则(2.1)和Grushin算子性质,本文建立了系统(1.1)解的精确积分估计.

(2)通过发展文献[16, 21]中的方法,本文建立了一个新的比较原理,以及利用Bootstrap方法给出解的 L^2 -估计,从而可以证明定理1.1.

推论1.1  设 u 是双Grushin算子椭圆方程

\Delta_G^2 u = u^q, \qquad {{\Bbb R}} ^N = {{\Bbb R}} ^{N_1}\times {{\Bbb R}} ^{N_2}

的正稳定解.如果 N_{a}, q > 1 满足下面条件

N_a <2+ \frac{2(q+1)}{q-1} \kappa_0,

其中 \kappa_{0} 是如同定理1.1,则方程没有正稳定解.

本文 C 总表示一般的正常数,与其它变量无关. B_R(x) 表示 {{\Bbb R}} ^N 上以 x 为球心 R 为半径的开球.另记 B_{R} = B_{R}(0) .

2 预备知识

首先建立下面稳定解的两个准则.

引理2.1  设 (u, v) 是椭圆系统(1.1)的非负稳定解,则下面两个不等式成立

\begin{equation} q\int_{\Omega} \omega u^{q-1}\zeta^{2} {\rm d}x \le \int_{\Omega}\frac{|\Delta_{G}\zeta|^{2}}{\omega} {\rm d}{\bf x}, \quad \forall \zeta \in C_0^2 (\Omega) \end{equation}
(2.1)

\begin{equation} \sqrt{q}\int_{\Omega} \omega u^{\frac{q-1}{2}}\zeta^{2} {\rm d}x \le \int_{\Omega}|\nabla_{G}\zeta|^{2}{\rm d}x, \quad \forall \zeta \in C_0^1(\Omega). \end{equation}
(2.2)

  用 \frac{\zeta^{2}}{\phi} 乘以方程(1.3)的第二个方程,其中 \zeta \in C_0^2 (\Omega) ,并分部积分可得

q\int_{\Omega} \omega u^{q-1}\phi \frac{\zeta^{2}}{\phi} {\rm d}x \le \int_{\Omega}-\Delta_{G}\psi \frac{\zeta^{2}}{\phi} {\rm d}x \leq\int_{\Omega}\frac{\Delta_{G}\phi}{\omega}\cdot\Delta_{G}(\zeta^2 \phi^{-1}){\rm d}x.

简单计算可得

\begin{eqnarray*} \Delta_{G}\phi\Delta_{G}(\zeta^2 \phi^{-1}& = & - \Big (\zeta\phi^{-1}\Delta_{G}\phi-\Delta_{G}\zeta \Big )^{2}+|\Delta_{G}\zeta|^{2} -2\phi^{-1}(\omega\psi+\mathfrak{e}\phi)(\nabla_{G}\zeta-\zeta\phi^{-1}\nabla_{G}\phi)^{2}\\ &\le & |\Delta_{G}\zeta|^{2}. \end{eqnarray*}

因此有

\begin{eqnarray*} q\int_{\Omega} \omega u^{q-1}\zeta^{2} {\rm d}{ x} \le \int_{\Omega}\frac{|\Delta_{G}\zeta|^{2}}{\omega} {\rm d}{ x}, \qquad \forall \zeta \in C_0^2 (\Omega). \end{eqnarray*}

下面证明(2.2)式.由稳定解的定义可得

-\frac{\Delta_{G}\psi}{\psi}\geq q\omega u^{q-1}\frac{\phi}{\psi}

-\frac{\Delta_{G}\phi}{\phi}\geq\frac{\omega\psi}{\phi}.

分别用 \zeta^{2} \eta^{2} 乘上面两个不等式,其中 \zeta, \eta \in C_0^1 (\Omega) ,积分可得

q\int_{\Omega} \omega u^{q-1}\frac{\phi}{\psi}\zeta^{2} {\rm d}x \le -\int_{\Omega}\frac{\Delta_{G}\psi}{\psi}\zeta^{2}{\rm d}x

\int_{\Omega} \omega\frac{\psi}{\phi}\eta^{2} {\rm d}x \le -\int_{\Omega}\frac{\Delta_{G}\phi}{\phi}\eta^{2}{\rm d}x .

直接计算有

\begin{eqnarray*} \int_{\Omega} \left (-\frac{\Delta_{G}\psi}{\psi}\zeta^{2}-|\nabla_{G}\zeta|^{2} \right ){\rm d}x = -\int_{\Omega}\Big [ \zeta\psi^{-1}\nabla_{G}\psi-\nabla_{G}\zeta \Big ]^{2}{\rm d}x\le 0. \end{eqnarray*}

\begin{eqnarray*} q\int_{\Omega} \omega u^{q-1}\frac{\phi}{\psi}\zeta^{2} {\rm d}x \le \int_{\Omega}|\nabla_{G}\zeta|^{2}{\rm d}x. \end{eqnarray*}

类似可得

\begin{eqnarray*} \int_{\Omega}\omega\frac{\psi}{\phi}\eta^{2}{\rm d}x\leq\int_{\Omega}|\nabla_{G}\eta|^{2}{\rm d}x . \end{eqnarray*}

则使用不等式 a^{2}+b^{2}\geq2ab 且取 \zeta = \eta ,有

\begin{eqnarray*} \sqrt{q}\int_{{{\Bbb R}} ^N} \omega u^{\frac{q-1}{2}}\zeta^{2} {\rm d}x \le \int_{{{\Bbb R}} ^N}|\nabla_{G}\zeta|^{2}{\rm d}x, \qquad \forall \zeta \in C_0^1 (\Omega). \end{eqnarray*}

结论得证.

为了方便,记 {\cal D} (x): = 1+\|x\|^{2(a+1)} .

引理2.2  对任意的 \zeta, \eta \in C_0^4 ({{\Bbb R}} ^N) ,有下面不等式成立

\begin{eqnarray} \int_{{{\Bbb R}} ^N} \frac{\Delta_{G} \zeta\Delta_{G}(\zeta\eta^{2})}{\omega} {\rm d}x & = & \int_{{{\Bbb R}} ^N}\frac{[\Delta_{G}(\zeta\eta)]^{2}}{\omega} {\rm d}x \\ && +\int_{{{\Bbb R}} ^N}\frac{[-4(\nabla_{G}\zeta\cdot\nabla_{G}\eta)^{2}+2\zeta\Delta_{G}\zeta|\nabla_{G}\eta|^{2}]}{\omega}{\rm d}x \\ && +\int_{{{\Bbb R}} ^N}\frac{\zeta^{2}}{\omega} \Big [2\nabla_{G}(\Delta_{G}\eta)\cdot\nabla_{G}\eta+(\Delta_{G}\eta)^{2} \Big ]{\rm d}x \\ & & -2\beta \int_{{{\Bbb R}} ^N}\frac{\zeta^{2}\Delta_{G}\eta|x|^{a}}{{\cal D}(x) \omega} \left (\nabla_{G}\eta, (|x|^a x, y) \right ){\rm d}x \end{eqnarray}
(2.3)

\begin{eqnarray} 2 \int_{{{\Bbb R}} ^N} \frac{|\nabla_{G}\zeta|^2|\nabla_{G}\eta|^2}{\omega} {\rm d}x & = & 2\int_{{{\Bbb R}} ^N}\frac{\zeta(-\Delta_{G}\zeta)|\nabla_{G}\eta|^{2}}{\omega}{\rm d}x +\int_{{{\Bbb R}} ^N}\frac{\zeta^{2}\Delta_{G}(|\nabla_{G}\eta|^{2})}{\omega}{\rm d}x \\ && -2\beta \int_{{{\Bbb R}} ^N}\frac{\zeta^{2}|x|^{a}}{{\cal D}(x) \omega} \left (\nabla_{G}(|\nabla_{G}\eta|^{2}), (|x|^{a}x, y) \right ){\rm d}{ x} \\ & & +\beta \int_{{{\Bbb R}} ^N}\frac{\zeta^{2}|\nabla_{G}\eta|^{2}|x|^{2a}}{{\cal D} (x) \omega} \left [(\beta+2a+2)\frac{\|x\|^{2(a+1)}}{{\cal D} (x)} -(2a+N_a) \right ]{\rm d}x.{}\\ \end{eqnarray}
(2.4)

  简单计算可得

\begin{eqnarray*} \Delta_{G}\zeta\Delta_{G}(\zeta\eta^{2})& = & [\Delta_{G}(\zeta\eta)]^{2}-4(\nabla_{G}\zeta\cdot\nabla_{G}\eta)^{2} -\zeta^{2}(\Delta_{G}\eta)^{2} \\ && +2\zeta\Delta_{G}\zeta|\nabla_{G}\eta|^{2}-4\zeta\Delta_{G}\eta\nabla_{G}\zeta\cdot\nabla_{G}\eta, \end{eqnarray*}

\nabla_{G}(\omega^{-1}) = -\beta \left (1+\|x\|^{2(a+1)} \right )^{-\frac{\beta}{2(a+1)}-1}\left (|x|^{2a} x, |x|^a y \right )

\begin{eqnarray*} -4\int_{{{\Bbb R}} ^N}\frac{\zeta\Delta_{G}\eta\nabla_{G}\zeta\cdot\nabla_{G}\eta}{\omega} {\rm d}x & = &2\int_{{{\Bbb R}} ^N}\frac{\zeta^{2}}{\omega}\Big [\nabla_{G}(\Delta_{G}\eta)\cdot\nabla_{G}\eta+(\Delta_{G}\eta)^{2} \Big ] {\rm d}x\\ && +2\int_{{{\Bbb R}} ^N}\zeta^{2}\Delta_{G}\eta\nabla_{G}\eta\cdot\nabla_{G}(\omega^{-1}){\rm d}x. \end{eqnarray*}

因此,综合上面三个等式可得等式(2.3)成立.

另一方面,容易验证

\Delta_{G}(\omega^{-1}) = \beta \left (1+\|x\|^{2(a+1)} \right )^{-\frac{\beta}{2(a+1)}-1} |x|^{2a}\left [(\beta+2a+2)\frac{\|x\|^{2(a+1)}}{{\cal D}(x)}-2a-N_a \right ]

\begin{eqnarray*} \int_{{{\Bbb R}} ^N} \frac{\Delta_{G}(\zeta^{2})|\nabla_{G}\eta|^{2}}{\omega} {\rm d}x & = &\int_{{{\Bbb R}} ^N}\frac{\zeta^{2}\Delta_{G}(|\nabla_{G}\eta|^{2})}{\omega}{\rm d}x +2\int_{{{\Bbb R}} ^N}\zeta^{2}\nabla_{G}(|\nabla_{G}\eta|^{2})\cdot\nabla_{G}(\omega^{-1}){\rm d}x \\ && +\int_{{{\Bbb R}} ^N}\zeta^{2}|\nabla_{G}\eta|^{2}\Delta_{G}(\omega^{-1}){\rm d}x. \end{eqnarray*}

联合等式 \frac{1}{2}\Delta_{G}(\zeta^{2}) = |\nabla_{G}\zeta|^{2}+\zeta\Delta_{G}\zeta 可得(2.4)式成立.

采用类似于文献[7, Lemma 2.4]和[20, Lemma 2.3]的方法,可以给出系统(1.1)稳定解的精确积分估计.

引理2.3  设 (u, v) 是系统(1.1)的一个非负稳定解.则对任意 R > 0 ,有

\int_{B_R\times B_{R^{a+1}}}\omega \left (v^{2}+u^{q+1}\right ) {\rm d}x\leq CR^{N_a-4-\beta-\frac{4(\beta+2)}{q-1}}.

  设 \xi_i \in C_c^{\infty}({{\Bbb R}}, [0, 1]) , i = 1, 2 使得在 [-1, 1] \xi_i = 1 ,在 [-2^{1+(i-1)a}, 2^{1+(i-1)a}] \xi_i = 0 .对任意的 R > 0 ,定义 \varphi_R(x, y) = \xi_1(\frac{|x|}{R}) \xi_2(\frac{|y|}{R^{a+1}}) .则存在与 R 无关的常数 C > 0 ,使得

\begin{eqnarray*} &&|\nabla_{x}\varphi_{R}|\leq CR^{-1}, \quad \quad |\nabla_{y}\varphi_{R}|\leq CR^{-(a+1)}, \\ &&|\Delta_{x}\varphi_{R}|\leq CR^{-2}, \quad \quad |\Delta_{y}\varphi_{R}|\leq CR^{-2(a+1)}. \end{eqnarray*}

u\varphi^{2}_{R} 乘以系统(1.1)的第二个方程并分部积分可得

\int_{{{\Bbb R}} ^N}\omega u^{q+1}\varphi_{R}^{2}{\rm d}x = \int_{{{\Bbb R}} ^N}\frac{\Delta_{G}u\Delta_{G}(u\varphi_{R}^{2})}{\omega}{\rm d}x.

把测试函数 \zeta = u\varphi_{R} 插入(2.1)式中可得

q\int_{{{\Bbb R}} ^N}\omega u^{q+1}\varphi^{2}_{R}{\rm d}x\leq \int_{{{\Bbb R}} ^N}\frac{[\Delta_{G}(u\varphi_{R}]^{2}}{\omega}{\rm d}x.

则联合(2.3)和(2.4)式,有

\begin{eqnarray*} (q-1)\int_{{{\Bbb R}} ^N} \omega u^{q+1}\varphi_R^{2}{\rm d}x &\le& 6 \int_{{{\Bbb R}} ^N}\frac{u(-\Delta_{G}u) |\nabla_{G}\varphi_R|^2}{\omega}{\rm d}x \\ && + \int_{{{\Bbb R}} ^N}\frac{u^{2}}{\omega} \Big [2\Delta_{G}(|\nabla_{G}\varphi_R|^{2})-2\nabla_{G}(\Delta_{G}\varphi_R)\cdot\nabla_{G}\varphi_R \Big ]{\rm d}x \\ && +2\beta \int_{{{\Bbb R}} ^N}\frac{u^{2}|x|^{a}}{\omega {\cal D} (x)} \Big ( \Delta_{G}\varphi_R \nabla_{G}\varphi_R-2\left (\nabla_{G}(|\nabla_{G}\varphi_R|^2), (|x|^a x, y) \right ) \Big ) {\rm d}x \\ & &+2\beta \int_{{{\Bbb R}} ^N}\frac{u^{2}|\nabla_{G}\varphi_R|^{2}|x|^{2a}}{\omega {\cal D} (x)} \left [(\beta+2a+2)\frac{\|x\|^{2(a+1)}}{{\cal D} (x)} -(2a+N_a) \right ]{\rm d}x. \end{eqnarray*}

因为 \Delta_{G}(u\varphi_R) = -\omega v\varphi_R+2\nabla_{G}u\cdot\nabla_{G}\varphi_R+u\Delta_{G}\varphi_R ,联合上面不等式和引理 可得

\begin{eqnarray} \int_{{{\Bbb R}} ^N}\omega \left ( v^{2}+u^{q+1}\right )\varphi_R^{2}{\rm d}x &\le& C\int_{{{\Bbb R}} ^N}uv|\nabla_{G}\varphi_R|^{2}{\rm d}x \\ && +C\int_{{{\Bbb R}} ^N}\frac{u^{2}}{\omega}\Big [|\Delta_{G}(|\nabla_{G}\varphi_R|^{2})| +|\nabla_{G}(\Delta_{G}\varphi_R)\nabla_{G}\varphi_R | \Big ]{\rm d}x \\ && +C\int_{{{\Bbb R}} ^N}\frac{u^{2}|x|^{a}}{\omega {\cal D}(x)} \left (|\nabla_{G}(|\nabla_{G}\varphi_R|^{2})|+|\Delta_{G}\varphi_R \nabla_{G}\varphi_R |\right ) \left | (|x|^{a}x , y)\right | {\rm d}x \\ & &+C\int_{{{\Bbb R}} ^N}\frac{u^{2}|\nabla_{G}\varphi_R|^{2}|x|^{2a}}{\omega {\cal D} (x)}\left [\frac{\|x\|^{2(a+1)}}{{\cal D} (x)} +C \right ]{\rm d}x. \end{eqnarray}
(2.5)

在不等式(2.5)中,用 \varphi_R^m 代替 \varphi_R , m 充分大.容易验证

\int_{{{\Bbb R}} ^N} uv \varphi_R^{2(m-1)}|\nabla_{G}\varphi_R|^{2}{\rm d}x \leq\frac{1}{2C}\int_{{{\Bbb R}} ^N}\omega v^{2}\varphi_R^{2m}{\rm d}x +C\int_{{{\Bbb R}} ^N}\frac{u^{2}}{\omega}\varphi_R^{2(m-1)}|\nabla_{G} \varphi_R|^{4}{\rm d}x.

则联合上面两个不等式,有

\int_{{{\Bbb R}} ^N}\omega \left (v^{2}+u^{q+1} \right )\varphi_R^{2m}{\rm d}x \le C\int_{{{\Bbb R}} ^N}u^2 {\cal F}(\varphi_R, m, x) \omega^{-1} {\rm d}x,

其中

\begin{eqnarray*} {\cal F} (\varphi_R, m, x)& = & \varphi_R^{2(m-1)}|\nabla_{G}\varphi_R|^{4}+|\Delta_{G}(|\nabla_{G}\varphi_R^m|^{2})| +|\nabla_{G}(\Delta_{G}\varphi_R^m)\nabla_{G}\varphi_R^m | \\ && +\frac{|x|^{a}}{1+\|x\|^{2(a+1)}}\Big [\left (|\nabla_{G}(|\nabla_{G}\varphi_R^m|^{2})|+|\Delta_{G}\varphi_R^m \nabla_{G}\varphi_R^m |\right ) \left | (|x|^a x, y)\right | \\ && +|x|^{a}|\nabla_{G}\varphi_R^m|^2 \Big ] +\frac{|\nabla_{G}\varphi_R^m|^{2}|x|^{2a}}{(1+\|x\|^{2(a+1)})^2}\|x\|^{2(a+1)}. \end{eqnarray*}

应用Hölder不等式可得

\int_{B_R\times B_{R^{a+1}}}\omega \left (v^{2}+u^{q+1} \right ){\rm d}x\leq CR^{N_a-4-\beta-\frac{4(\beta+2)}{q-1}}.

结论成立.

受文献[16, 21]的启发,我们建立新的比较原理.

引理2.4  设 (u, v) 是系统(1.1)的正经典解,则不等式成立

\frac{u^{q+1}}{q+1}\leq \frac{v^{2}}{2}.

  设 \delta = \sqrt{\frac{2}{q+1}} , \Psi = \delta u^{\frac{q+1}{2}}-v .直接计算可得

\begin{eqnarray} \Delta_{G} \Psi = \frac{q-1}{2\delta}u^{\frac{q-3}{2}}|\nabla_{G}u|^{2}+\omega u^{q}-\delta^{-1}u^{\frac{q-1}{2}}\omega v \ge \delta^{-1}\omega u^{\frac{q-1}{2}}\Psi. \end{eqnarray}
(2.6)

假设矛盾,则可设 { } M = \sup_{{{\Bbb R}} ^{N}}\Psi, 0 < M\leq+\infty .下面仅考虑两种情况.

情况1   \Psi 的上确界在无穷远处可以取到.

取截断函数 \xi\in C_{0}^{2}({{\Bbb R}} ^N, [0, 1]) ,并设 \varphi(x, y) = \xi^{m}(x, y) ,这里 m > 0 由后面确定.根据 \nabla\xi \Delta\xi 的有界性意味着

|\Delta \varphi|\leq C \varphi^{\frac{m+2}{m}}, \qquad \varphi^{-1}|\nabla \varphi |^{2}\leq C\varphi^{\frac{m+2}{m}}.

\varphi_{R}(x, y): = \varphi \left (\frac{x}{R}, \frac{y}{R^{a+1}} \right) \Psi_{R}: = \varphi_{R}\Psi ,则

\begin{eqnarray*} \begin{array}{cc} \sup\limits_{{{\Bbb R}} ^{n}}\Psi_R (x, y) = \max\limits_{{{\Bbb R}} ^{n}} \Psi_R (x, y) \longrightarrow M \;\ \mbox{as} \;\ R \longrightarrow +\infty. \end{array} \end{eqnarray*}

(x_{R}, y_{R}) 是最大值点,即 \Psi_{R}(x_{R}, y_{R}) = \max\limits_{{{\Bbb R}} ^{n}}{\Psi_{R}}(x, y) .显然

\nabla_{G}\Psi_R (x_{R}, y_{R}) = 0, \; \;\ \Delta_{G}\Psi_R (x_{R}, y_{R})\le 0.

下面所有的估计式都在点 (x_{R}, y_{R}) 取得.直接计算可得

0 = \nabla_{G}\Psi_{R}(x_R, y_R) = \nabla_{G}\varphi_{R}\Psi+\varphi_R\nabla_{G}\Psi \Longrightarrow \nabla_{G}\Psi = -\varphi_{R}^{-1}\nabla_{G}\varphi_R \Psi.

不等式 \Delta_{G}\Psi_{R}(x_{R}, y_{R})\leq0 表明

\begin{eqnarray*} \Delta_{G}\varphi_{R}\Psi+2\nabla_{G}\varphi_{R}\cdot\nabla_{G}\Psi+\varphi_{R} \Delta_G \Psi \le 0. \end{eqnarray*}

联合上面两个不等式发现

\varphi_{R}\Delta_{G}\Psi \le \Big [ 2\varphi_{R}^{-1}|\nabla_{G}\varphi_{R}|^{2}-\Delta_{G}\varphi_{R} \Big ] \Psi \le CR^{-2}\varphi_{R}^{\frac{m-2}{m}}\Psi.

因此联合不等式(2.6),有

\begin{eqnarray*} \delta^{-1}\omega u^{\frac{q-1}{2}} \varphi_R \Psi\leq CR^{-2}\varphi_{R}^{\frac{m-2}{m}}\Psi. \end{eqnarray*}

选择 m = \frac{2q+2}{q-1} ,则

\delta^{-1}\omega \left [\delta^{-1}(\Psi_R+v\varphi_R)\right ]^{\frac{q-1}{q+1}}\leq CR^{-2}.

这是一个矛盾.

情况2  存在 (x_0, y_0) 使得 M = \sup\limits_{{{\Bbb R}} ^{N}}\Psi = \Psi(x_0, y_0) > 0 .

从不等式(2.6)容易推出

\begin{eqnarray*} \Delta_{G}\Psi(x_0, y_0) \ge \delta^{-1}\omega u^{\frac{q-1}{2}}\Psi(x_0, y_0)>0. \end{eqnarray*}

因此,至少存在一个指数 i ,使得 \frac{\partial^{2}}{\partial x_{i}^{2}}\Psi(x_0, y_0) > 0 \frac{\partial^{2}}{\partial y_{i}^{2}}\Psi(x_0, y_0) > 0 .显然这矛盾于 \Psi(x_0, y_0) = \sup\limits_{{{\Bbb R}} ^{N}} \Psi .

引理2.5[16]  设 \Phi 是光滑函数, k_{a} = \frac{N_{a}}{N_{a}-2} .则有

\begin{eqnarray} \left (\int_{B_{R}\times B_{R^{a+1}}}\Phi^{2k_{a}}{\rm d}x \right )^{\frac{1}{k_{a}}} &\le & CR^{2+N_{a}\left (\frac{1}{k_{a}}-1 \right )}\int_{B_{2R} \times {B_{(2R)^{a+1}}}}|\nabla_{G}\Phi|^{2}{\rm d}x \\ && +CR^{N_{a}\left (\frac{1}{k_{a}}-1 \right )}\int_{B_{2R} \times {B_{(2R)^{a+1}}}}\Phi^{2}{\rm d}x. \end{eqnarray}
(2.7)

  设 \varphi\in C_c^{2}({{\Bbb R}} ^{N}, [0, 1]) 是截断函数,使得在 B_{1}\times B_{1} 上有 \varphi = 1 ,在 B_{2}\times B_{2}^{a+1} \varphi = 0 .使用Sobolev不等式[15],则

\begin{eqnarray*} \left (\int_{B_{1}\times B_{1}}\Phi^{2k_{a}}{\rm d}x \right )^{\frac{1}{2k_{a}}} & \le & \left (\int_{B_{2}\times B_{2^{a+1}}}(\Phi\varphi)^{2k_{a}}{\rm d}x \right )^{\frac{1}{2k_{a}}}\\ & \le & C \left (\int_{B_{2}\times B_{2^{a+1}}}|\nabla_{G}(\Phi\varphi)|^{2}{\rm d}x \right )^{\frac{1}{2}}\\ &\le & C\left (\int_{B_{2}\times B_{2^{a+1}}} \Big [|\nabla_{G}\Phi|^{2}+\Phi^{2} \Big ]{\rm d}x \right )^{\frac{1}{2}}. \end{eqnarray*}

利用Rescaling方法意味着不等式(2.7)成立.

3 定理1.1的证明

引理3.1  设 (u, v) 是系统(1.1)的正稳定解,则对任意的 \kappa\geq2 R > 0 ,有

\begin{eqnarray*} \int_{B_R\times B_{R^{a+1}}}\omega u^{q}v^{\kappa -1}{\rm d} x\leq\frac{C}{R^{2}}\int_{B_{2R}\times B_{(2R)^{a+1}}}v^{\kappa}{\rm d}x, \end{eqnarray*}

其中 k 满足

\begin{eqnarray*} {\cal L} (q, \kappa): = \kappa^4-\frac{32q}{q+1}\kappa^2+\frac{32q(q+3)}{(q+1)^2}\kappa-\frac{64q}{(q+1)^2}<0. \end{eqnarray*}

  设 \xi_{i}\in C_c^2({{\Bbb R}}, [0, 1]) , i = 1, 2 ,使得在 [-1, 1] \xi_{i} = 1 ,在 [-2^{1+(i-1)a}, 2^{1+(i-1)a}] \xi_{i} = 0 .对任意的 R > 0 ,定义 \varphi_{R}(x, y) = \xi_{1}(\frac{|x|}{R})\xi_{2}(\frac{|y|}{R^{a+1}}) .则存在与 R 无关的常数 C > 0 ,使得

\begin{eqnarray*} &&|\nabla_{x}\varphi_{R}|\leq CR^{-1}, \; \ \; \ |\nabla_{y}\varphi_{R}|\leq CR^{-(a+1)}, \\ &&|\Delta_{x}\varphi_{R}|\leq CR^{-2}, \; \ \; \ |\Delta_{y}\varphi_{R}|\leq CR^{-2(a+1)}. \end{eqnarray*}

在(2.2)式中取测试函数 \zeta = u^{\frac{\lambda+1}{2}}\varphi_R ,从而有

\begin{eqnarray*} \sqrt{q}\int_{{{\Bbb R}} ^N}\omega u^{\frac{q-1}{2}}u^{\lambda+1}\varphi_R^{2}{\rm d}x &\le & \int_{{{\Bbb R}} ^N}u^{\lambda+1}|\nabla_{G}\varphi_R|^{2}{\rm d}x +\int_{{{\Bbb R}} ^N}\left |\nabla_{G}\left (u^{\frac{\lambda+1}{2}} \right ) \right |^{2}\varphi_R^{2}{\rm d}x \\ && +(\lambda+1)\int_{{{\Bbb R}} ^N}u^{\lambda}\varphi_R\nabla_{G}u\cdot\nabla_{G}\varphi_R {\rm d}x. \end{eqnarray*}

直接计算

(\lambda+1)\int_{{{\Bbb R}} ^N}u^{\lambda}\varphi_R\nabla_{G}u\cdot\nabla_{G}\varphi_R {\rm d}x = -\frac{1}{2}\int_{{{\Bbb R}} ^N}u^{\lambda+1}\Delta_{G}(\varphi_R^{2}){\rm d}x

\begin{eqnarray*} \int_{{{\Bbb R}} ^N} \left |\nabla_{G} \left (u^{\frac{\lambda+1}{2}} \right ) \right |^{2} \varphi_R^{2}{\rm d}x & = &\frac{(\lambda+1)^{2}}{4}\int_{{{\Bbb R}} ^N}u^{\lambda-1}|\nabla_{G}u|^{2}\varphi_R^{2}{\rm d}x\\ & = & -\frac{(\lambda+1)^{2}}{4\lambda}\int_{{{\Bbb R}} ^N}u^{\lambda}\varphi_R^{2}\Delta_{G}u{\rm d}x -\frac{\lambda+1}{4\lambda}\int_{{{\Bbb R}} ^N}\nabla_{G}(u^{\lambda+1})\cdot\nabla_{G}(\varphi_R^{2}){\rm d}x\\ & = & \frac{(\lambda+1)^{2}}{4\lambda}\int_{{{\Bbb R}} ^N}\omega u^{\lambda}v\varphi_R^{2}{\rm d}x +\frac{\lambda+1}{4\lambda}\int_{{{\Bbb R}} ^N}u^{\lambda+1}\Delta_{G}(\varphi_R^{2}){\rm d}x. \end{eqnarray*}

因此

\begin{eqnarray*} \sqrt{q}\int_{{{\Bbb R}} ^N}\omega u^{\frac{q-1}{2}}u^{\lambda+1}\varphi_R^{2}{\rm d}x & \le &\frac{(\lambda+1)^2}{4\lambda}\int_{{{\Bbb R}} ^N}\omega u^{\lambda}v\varphi_R^{2}{\rm d}x \\ && +C \int_{{{\Bbb R}} ^N}u^{\lambda+1}\Big [|\nabla_{G}\varphi_R|^{2}+ |\Delta_{G}(\varphi_R^{2})| \Big ]{\rm d}x. \end{eqnarray*}

\mu_{1}: = \frac{4\lambda\sqrt{q}}{(\lambda+1)^{2}} ,即

\begin{eqnarray*} \int_{{{\Bbb R}} ^N}\omega u^{\frac{q-1}{2}} u^{\lambda+1}\varphi_R^{2}{\rm d}x \le \frac{1}{\mu_{1}}\int_{{{\Bbb R}} ^N}\omega u^{\lambda}v\varphi_R^{2}{\rm d}x +\frac{C}{R^{2}}\int_{B_{2R} \times B_{(2R)^{a+1}}}u^{\lambda+1}{\rm d}x. \end{eqnarray*}

又在(2.2)式中插入 \zeta = v^{\frac{\tau+1}{2}}\varphi_R , \tau\geq1 ,则可得

\begin{eqnarray*} \sqrt{q} \int_{{{\Bbb R}} ^N} \omega u^{\frac{q-1}{2}}v^{\tau+1}\varphi_R^{2}{\rm d}x & \le& \int_{{{\Bbb R}} ^N}u^{\tau+1}|\nabla_{G}\varphi_R|^{2}{\rm d}x +\int_{{{\Bbb R}} ^N} \left |\nabla_{G}\left (v^{\frac{\tau+1}{2}}\right ) \right |^{2}\varphi_R^{2}{\rm d}x \\ &&-\frac{1}{2}\int_{{{\Bbb R}} ^N}v^{\tau+1}\Delta_{G}(\varphi_R^{2}){\rm d}x. \end{eqnarray*}

类似的选择 \mu_{2}: = \frac{4\tau\sqrt{q}}{(\tau+1)^{2}} ,有

\begin{eqnarray*} \int_{{{\Bbb R}} ^N}\omega u^{\frac{q-1}{2}}v^{\tau+1}\varphi_R^{2}{\rm d}x \le \frac{1}{\mu_{2}}\int_{{{\Bbb R}} ^N}\omega u^{q}v^{\tau}\varphi_R^{2}{\rm d}x +\frac{C}{R^{2}}\int_{B_{2R} \times B_{(2R)^{a+1}}}v^{\tau+1}{\rm d}x. \end{eqnarray*}

{\cal J}_{1}: = \int_{{{\Bbb R}} ^N}\omega u^{\frac{q-1}{2}}u^{\lambda+1}\varphi_{R}^{2}{\rm d}x,

{\cal J}_{2}: = \int_{{{\Bbb R}} ^N}\omega u^{\frac{q-1}{2}}v^{\tau+1}\varphi_{R}^{2}{\rm d}x.

因此

\begin{eqnarray*} {\cal J}_1+\mu_{2}^{\tau+1}{\cal J}_2 &\le &\frac{1}{\mu_{1}}\int_{{{\Bbb R}} ^N}\omega u^{\lambda}v\varphi_R^{2}{\rm d}{ x}+\mu_{2}^{\tau}\int_{{{\Bbb R}} ^N}\omega u^{q}v^{\tau}\varphi_R^{2}{\rm d}x\\ & & +\frac{C}{R^{2}} \int_{B_{2R} \times B_{(2R)^{a+1}}}(u^{\lambda+1}+v^{\tau+1})\varphi_R^{2}{\rm d}{ x}. \end{eqnarray*}

选择 \lambda \tau 满足关系式

\begin{eqnarray*} 2\lambda = (q+1)\tau+q-1 \Longleftrightarrow \lambda+1 = \frac{(q+1)(\tau+1)}{2}. \end{eqnarray*}

使用Young不等式可得

\begin{eqnarray*} \frac{1}{\mu_{1}}\int_{{{\Bbb R}} ^N}\omega u^{\lambda}v\varphi_R^{2}{\rm d}x \le \frac{\tau}{\tau+1}\int_{{{\Bbb R}} ^N}\omega u^{\frac{q-1}{2}}u^{\lambda+1}\varphi_R^{2}{\rm d}x +\frac{1}{\mu_{1}^{\tau+1}(\tau+1)}\int_{{{\Bbb R}} ^N}\omega u^{\frac{q-1}{2}}v^{\tau+1}\varphi_R^{2}{\rm d}x. \end{eqnarray*}

类似的计算,有

\begin{eqnarray*} \mu_{2}^{\tau}\int_{{{\Bbb R}} ^N}\omega u^{q}v^{\tau}\varphi_R^{2}{\rm d}x \le \frac{1}{\tau+1}\int_{{{\Bbb R}} ^N}\omega u^{\frac{q-1}{2}}u^{\lambda+1}\varphi_R^{2}{\rm d}x +\frac{\mu_{2}^{\tau+1}\tau}{\tau+1}\int_{{{\Bbb R}} ^N}\omega u^{\frac{q-1}{2}}v^{\tau+1}\varphi_R^{2}{\rm d}x. \end{eqnarray*}

则再结合上面三个不等式可知

\begin{eqnarray*} {\cal J}_1+\mu_{2}^{\tau+1}{\cal J}_2 &\le & \frac{\tau}{\tau+1}{\cal J}_1+\frac{1}{\tau+1}{\cal J}_1 +\frac{1}{{\mu_{1}^{\tau+1}}(\tau+1)}{\cal J}_2 +\frac{\mu_2^{\tau+1}\tau}{\tau+1}{\cal J}_2\\ && +\frac{C}{R^{2}}\int_{B_{2R} \times B_{(2R)^{a+1}}} (u^{\lambda+1}+v^{\tau+1}){\rm d}x. \end{eqnarray*}

\begin{eqnarray*} \frac{(\mu_1 \mu_2)^{\tau+1}-1}{\mu_1^{\tau+1}(\tau+1)}{\cal J}_2 \le \frac{C}{R^{2}} \int_{B_{2R} \times B_{(2R)^{a+1}}} (u^{\lambda+1}+v^{\tau+1}){\rm d}x. \end{eqnarray*}

如果 \mu_1 \mu_2 > 1 ,则从引理2.4发现

\begin{eqnarray*} \int_{B_R \times B_{R^{a+1}}} \omega u^{\frac{q-1}{2}}v^{\tau+1}{\rm d} x\leq\frac{C}{R^{2}} \int_{B_{2R} \times B_{(2R)^{a+1}}}v^{\tau+1}{\rm d}x. \end{eqnarray*}

下面,我们取 \kappa = \tau+1 并结合引理2.4可得

\begin{eqnarray*} \int_{B_R \times B_{R^{a+1}}} \omega u^{q}v^{\kappa-1}{\rm d}x & = &\int_{B_R \times B_{R^{a+1}}} \omega u^{\frac{q-1}{2}}u^{\frac{q+1}{2}}v^{\kappa -1}{\rm d} x\\ & \le &C \int_{B_R \times B_{R^{a+1}}} \omega u^{\frac{q-1}{2}}v^{\kappa} {\rm d}x \\ & \le & \frac{C}{R^{2}}\int_{B_{2R} \times B_{(2R)^{a+1}}} v^{\kappa} {\rm d}x. \end{eqnarray*}

另一方面,因为 \mu_{1} = \frac{4\lambda\sqrt{q}}{(\lambda+1)^{2}} , \mu_{2} = \frac{4\tau\sqrt{q}}{(\tau+1)^{2}} , 2\lambda = (q+1)\tau+q-1 , \lambda+1 = \frac{(q+1)(\tau+1)}{2} \kappa = \tau+1 ,有

\mu_1\mu_2>1 \Longleftrightarrow 8q \Big [(q+1)(\kappa-1)+q-1 \Big ](\kappa -1) >\frac{(q+1)^2}{4} \kappa^4.

直接计算表明

{\cal L} (q, \kappa): = \kappa^4-\frac{32q}{q+1} \kappa^2+\frac{32q(q+3)}{(q+1)^2}\kappa -\frac{64q}{(q+1)^2}<0.

结论得证.

注3.1  可以注意到,当 \kappa\in(2s_{0}^{-}, 2s_{0}^{+}) , q > 1 时,引理3.1成立(参见文献[7, Remark 3.2]),其中

\begin{eqnarray*} &&s_0^-: = \sqrt{\frac{2q}{q+1}}-\sqrt{\frac{2q}{q+1}-\sqrt{\frac{2q}{q+1}}}, \\ &&s_0^+: = \sqrt{\frac{2q}{q+1}}+\sqrt{\frac{2q}{q+1}-\sqrt{\frac{2q}{q+1}}}. \end{eqnarray*}

而且,由(1.5)式定义的 {\cal L} 在区间 [2s_0^+, +\infty) 上有唯一根 \kappa_0 ,使得对任意的 \kappa \in [2s_0^+, \kappa_0) ,有 {\cal L}(q, \kappa) < 0 .

定理1.1的证明  用 v^{2s-1} \varphi_R^2 乘以系统(1.1)的第二个方程并分部积分可得

\begin{eqnarray*} \int_{{{\Bbb R}} ^N} |\nabla_G v|^2 v^{2s-2} \varphi_R^2 {\rm d}x& = &\frac{1}{2s-1} \int_{{{\Bbb R}} ^N} \omega u^q v^{2s-1} \varphi_R^2 {\rm d}x +\frac{1}{2s(2s-1)}\int_{{{\Bbb R}} ^N} v^{2s} \Delta_G (\varphi_R^2) {\rm d}x. \end{eqnarray*}

这里 \varphi_{R} 的定义与引理3.1相同.取 \Phi = v^s ,其中 2s 满足不等式(1.5),则引理3.1意味着

\begin{eqnarray*} \int_{B_R \times B_{R^{a+1}}} |\nabla_G \Phi |^2 {\rm d}x & = &s^2 \int_{B_R \times B_{R^{a+1}}} |\nabla_G v|^2 v^{2s-2} {\rm d}x \\ & \le & \frac{s^2}{2s-1} \int_{B_{2R} \times B_{(2R)^{a+1}}} \omega u^q v^{2s-1} \varphi_R^2 {\rm d} x \\ & & +\frac{s}{2(2s-1)}\int_{B_{2R} \times B_{(2R)^{a+1}}} v^{2s} \Delta_G (\varphi_R^2) {\rm d}x \\ & \le & \frac{C}{R^2} \int_{B_{2R} \times B_{(2R)^{a+1}}} v^{2s} {\rm d}x, \end{eqnarray*}

联合引理 可得

\begin{equation} \left (\int_{B_R \times B_{R^{a+1}}} v^{2sk_a} {\rm d}x \right )^{\frac{1}{k_a}} \le CR^{N_a \left (\frac{1}{k_a}-1 \right )} \int_{B_{2R} \times B_{(2R)^{a+1}}} v^{2s} {\rm d}x. \end{equation}
(3.1)

m 是满足 2\kappa_{a}^{m-1} < \kappa < 2\kappa_{a}^{m} 的非负整数.定义一个递增迭代序列

s_0 = 1, \; s_1 = k_a, \; s_2 = k_a^2, \cdots, s_m = k_a^m.

V = v^2 ,迭代不等式(3.1)可得

\left (\int_{B_R \times B_{R^{a+1}}} V^{k_a^m} {\rm d}x \right )^{\frac{1}{k_a^m}} \le CR^{N_a \left (\frac{1}{k_a^m}-1 \right )} \int_{B_{2^mR} \times B_{(2^mR)^{a+1}}} V {\rm d}x.

现在取 \gamma = 2k_a^m \gamma < \frac{N_a}{N_a-2} \kappa_0 ,则

\begin{eqnarray*} \left (\int_{B_R \times B_{R^{a+1}}} v^{\gamma} {\rm d}x\right )^{\frac{2}{\gamma}}& \le & CR^{N_a \left (\frac{2}{\gamma}-1 \right )} \int_{B_{2^mR} \times B_{(2^mR)^{a+1}}} v^2 {\rm d}x \\ &\le & CR^{N_a\left (\frac{2}{\gamma}-1 \right )+N_a-4-\beta-\frac{4(\beta+2)}{q-1}}. \end{eqnarray*}

容易看出

N_a\left (\frac{2}{\gamma}-1 \right )+N_a-4-\beta-\frac{4(\beta+2)}{q-1}<0

等价于

N_a<2+\left [4+\beta+\frac{4(\beta+2)}{q-1} \right ] \frac{\kappa_0}{2}.

因此从不等式(1.4)可得当 R \to +\infty 时, \|v\|_{L^{\gamma}({{\Bbb R}} ^N)} = 0 ,即,在 {{\Bbb R}} ^N v \equiv 0 ,这是矛盾.结论得证.

参考文献

Farina A .

On the classification of solutions of Lane-Emden equation on unbounded domains of \mathbb{R} ^N

J Math Pures Appl, 2007, 87, 537- 561

DOI:10.1016/j.matpur.2007.03.001      [本文引用: 1]

Dávila J , Dupaigne L , Wang K L , Wei J C .

A monotonicity formula and a Liouville-type theorem for a forth order supercritical problem

Adv Math, 2014, 258, 240- 285

DOI:10.1016/j.aim.2014.02.034      [本文引用: 1]

Cowan C , Ghoussoub N .

Regularity of semi-stable solutions to fourth order nonlinear eigenvalue problems on general domains

Calc Var PDE, 2014, 49, 291- 305

DOI:10.1007/s00526-012-0582-4      [本文引用: 1]

Dupaigne L , Ghergu M , Goubet O , Warnault G .

The Gel'fand problem for the biharmonic operator

Arch Ration Mech Anal, 2013, 208, 725- 752

DOI:10.1007/s00205-013-0613-0      [本文引用: 1]

Souplet P H .

The proof of the Lane-Emden conjecture in four space dimensions

Adv Math, 2009, 221, 1409- 1427

DOI:10.1016/j.aim.2009.02.014      [本文引用: 1]

Hajlaoui H , Harrabi A , Ye D .

On stable solutions of biharmonic problems with polynomial growth

Pacific J Math, 2014, 270, 79- 93

DOI:10.2140/pjm.2014.270.79      [本文引用: 1]

Hu L G , Zeng J .

Liouville type theorems for stable solutions of the weighted elliptic system

J Math Anal Appl, 2016, 437, 882- 901

DOI:10.1016/j.jmaa.2016.01.032      [本文引用: 4]

Birindelli I , Capuzzo Dolcetta I , Cutri A .

Liouville theorems for semilinear equations on the Heisenberg group

Ann Inst Henri Poincare Non Linéaire Anal, 1997, 14, 295- 308

DOI:10.1016/S0294-1449(97)80138-2      [本文引用: 1]

Birindelli I , Prajapat J .

Nonlinear Liouville theorems in the Heisenberg group via the moving plane method

Comm Partial Differential Equations, 1999, 24, 1875- 1890

DOI:10.1080/03605309908821485     

张书陶, 韩亚洲.

Heisenberg群上移动球面法的应用-一类半线性方程的Liouville型定理

数学物理学报, 2017, 37A (2): 278- 286

DOI:10.3969/j.issn.1003-3998.2017.02.007     

Zhang S T , Han Y Z .

An application of the method of moving shpere in the Heiseberg group-Liouville type theorem of a class of semilinear equatoins

Acta Math Sci, 2017, 37A (2): 278- 286

DOI:10.3969/j.issn.1003-3998.2017.02.007     

Garofalo N , Vassilev D .

Symmetry properties of positive entire solutions of Yamabe-type equations on groups of Heisenberg type

Duke Math J, 2001, 106, 411- 448

DOI:10.1215/S0012-7094-01-10631-5      [本文引用: 1]

Franchi B , Gutiérrez C E , Wheeden R L .

Weighted Sobolev-Poincaré inequalities for Grushin type operators

Comm Partial Differential Equations, 1994, 19, 523- 604

DOI:10.1080/03605309408821025      [本文引用: 1]

Monti R , Morbidelli D .

Kelvin transform for Grushin operators and critical semilinear equations

Duke Math J, 2006, 131, 167- 202

DOI:10.1215/S0012-7094-05-13115-5      [本文引用: 1]

Monticelli D D .

Maximum principles and the method of moving planes for a class of degenerate elliptic linear operators

J Eur Math Soc, 2010, 12, 611- 654

[本文引用: 1]

Yu X H .

Liouville type theorem for nonlinear elliptic equation involving Grushin operators

Commun Contemp Math, 2015, 17, 1450050

DOI:10.1142/S0219199714500503      [本文引用: 2]

Duong A T , Phan Q H .

Liouville type theorem for nonlinear elliptic system involving Grushin operator

J Math Anal Appl, 2017, 454, 785- 801

DOI:10.1016/j.jmaa.2017.05.029      [本文引用: 6]

Zhao X J , Wang X H , Yu X H .

Morse index and Liouville type theorems for elliptic equation involving Grushin operator

Sci China: Math, 2014, 44, 711- 718

URL     [本文引用: 1]

Cowan C .

Liouville theorems for stable Lane-Emden systems with biharmonic problems

Nonlinearity, 2013, 26, 2357- 2371

DOI:10.1088/0951-7715/26/8/2357      [本文引用: 1]

Montenegro M .

Minimal solutions for a class of elliptic systems

Bull London Math Soc, 2005, 37, 405- 416

DOI:10.1112/S0024609305004248      [本文引用: 1]

Hu L G .

A monotonicity formula and Liouville-type theorems for stable solutions of the weighted elliptic system

Adv Differential Equations, 2017, 22, 49- 76

URL     [本文引用: 2]

Cheng Z , Huang G G , Li C M .

On the Hardy-Littlewood-Sobolev type systems

Commun Pure Appl Anal, 2016, 15, 2059- 2074

DOI:10.3934/cpaa.2016027      [本文引用: 2]

/