数学物理学报, 2020, 40(1): 156-168 doi:

论文

加权的退化椭圆系统稳定解的Liouville定理

吴千秋, 胡良根,

Liouville Type Theorems for Stable Solutions of the Degenerate Elliptic System with Weight

Wu Qianqiu, Hu Lianggen,

通讯作者: 胡良根, E-mail: hulianggen@tom.com

收稿日期: 2018-05-8  

基金资助: 浙江省自然科学基金.  LY17A010007
宁波市自然科学基金.  2018A610194

Received: 2018-05-8  

Fund supported: the Natural Science Foundation of Zhejiang Province.  LY17A010007
the Natural Science Foundation of Ningbo.  2018A610194

摘要

该文研究了加权的退化椭圆系统

其中$\Delta_{G} u=\Delta_{x} u+(a+1)^2|x|^{2a}\Delta_{y} u$是Grushin算子, $a, \beta\ge0$, $q>1$, $\omega(x)=\left (1+\| x \|^{2(a+1)}\right)^{\frac{\beta}{2(a+1)}}$.超临界指数正稳定解的Liouville定理被建立.

关键词: Grushin算子 ; 稳定解 ; Liouville定理 ; Bootstrap方法

Abstract

We study the degenerate elliptic system with weight

where $\Delta_{G} u=\Delta_{x} u+(a+1)^2|x|^{2a}\Delta_{y} u$ is the Grushin operator, $a, \beta\ge0$, $q>1$, $\omega(x)=\left (1+\| x \|^{2(a+1)}\right)^{\frac{\beta}{2(a+1)}}$. Liouville type results for positive stable solutions in the supercritical exponent are established.

Keywords: Grushin operator ; Stable solution ; Liouville theorem ; Bootstrap method

PDF (350KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

吴千秋, 胡良根. 加权的退化椭圆系统稳定解的Liouville定理. 数学物理学报[J], 2020, 40(1): 156-168 doi:

Wu Qianqiu, Hu Lianggen. Liouville Type Theorems for Stable Solutions of the Degenerate Elliptic System with Weight. Acta Mathematica Scientia[J], 2020, 40(1): 156-168 doi:

1 引言

本文考虑加权的退化椭圆系统

$ \begin{equation} \left\{\begin{array}{ll} -\Delta_{G}u = \omega(x)v, \\ -\Delta_{G}v = \omega(x)u^q, \end{array}\right. \qquad {{\Bbb R}} ^N = {{\Bbb R}} ^{N_1}\times {{\Bbb R}} ^{N_2}, \end{equation} $

其中$ q > 1 $, $ a, \beta\geq0 $, $ x = (x, y)\in{{\Bbb R}} ^{N_1}\times {{\Bbb R}} ^{N_2} $, $ \omega(x) = \left (1+\| x \|^{2(a+1)}\right)^{\frac{\beta}{2(a+1)}} $.本文建立椭圆系统(1.1)正稳定解的Liouville定理,即证明系统(1.1)正稳定解的非存在性结果.这里Grushin算子(Grushin梯度)定义为

Grushin距离定义为$ \|x\| = \; (|x|^{2(a+1)}+|y|^{2})^{\frac{1}{2(a+1)}} $.

首先,可以注意到$ a = 0 $的情况, Grushin算子是拉普拉斯算子.则椭圆系统(1.1)是Lane-Emden方程或者Lane-Emden系统,这类方程和系统已经被许多专家讨论. 2007年, Farina[1]通过巧妙地运用Morse迭代考虑了Lane-Emden方程

$ \begin{equation} -\Delta u = |u|^{q-1}u, \quad \Omega\in{{\Bbb R}} ^N, \end{equation} $

给出了该方程有限Morse指标解(正解或者变号解)的完全分类.为了解决双调和方程$ \Delta^2 u = |u|^{q-1}u $稳定解和有限Morse指标解的完整分类, D$ \acute{a} $vila-Dupaigne-Wang-Wei[2]通过构造单调公式,将方程非平凡解的不存在性转化为非平凡齐次解的不存在性,从而得到相应的结果.

然而,上面所说的两种方法对于一些加权椭圆系统解的定性分析无效. Cowan-Ghoussoub[3]和Dupaigne等[4]各自独立的提出的一种方法能处理Lane-Emden系统和加权椭圆系统.如,基于联合使用Bootstrap方法、Souplet不等式[5]和稳定解的准则, Hajlaoui-Harrabi-Ye[6]和Hu-Zeng[7]建立了$ a = 0 $的加权Lane-Emden系统(1.1)稳定解的Liouville型定理.

对于$ a = 1 $的情况,问题(1.2)与Heisenberg Laplace方程

密切相关,其中$ \Delta_{H} $是Heisenberg Laplace算子.设$ u $是关于$ z $的径向函数,即$ u = u(|z|, t) $.$ \Delta_{H} u = \Delta_{z} u+4|z|^2 \frac{\partial ^2u}{\partial t^2} $$ a = 1 $时的Grushin算子.对于含Heisenberg Laplace算子的椭圆方程的Liouville定理和对称性质已有了很多优秀的成果,参见文献[8-11].

现在考虑$ a > 0 $的一般情况, Grushin算子相应性质已被许多专家讨论[12-13].最近,运用Kelvin变换结合移动平面法, Monticelli[14]证明了方程$ -\Delta_{G}u = u^{q} $非负经典解的Liouville定理成立, Yu[15]用同样的方法得到了上述方程非负弱解的Liouville定理.这里指数满足$ q < \frac{N_{a}+2}{N_{a}-2} $,其中$ N_{a}: = N_{1}+(a+1)N_{2} $称为齐次维数.

近年来,含Grushin算子的椭圆型方程或系统的稳定解与有限Morse指标解已被许多专家研究(参见文献[16-17]).利用Cowan[18]的方法, Duong等[16]得到了含Grushin算子的Lane-Emden系统

稳定解的Liouville定理.

受文Montenegro[19]启发,下面给出稳定解的定义.

定义1.1  设$ \Omega $$ {{\Bbb R}} ^N $的子集.系统(1.1)的解$ (u, v)\in C^2(\Omega)\times C^2(\Omega) $称为稳定的,如果特征值问题

$ \begin{equation} \left\{\begin{array}{ll} \begin{array}{ll} -\Delta_{G} \phi = \omega\psi+\mathfrak{e}\phi, \\ -\Delta_{G} \psi = q\omega u^{q-1}\phi+\mathfrak{e}\psi, \end{array} & \;\ x \in \Omega, \\ \phi = \psi = 0, & \quad \ \partial \Omega \end{array}\right. \end{equation} $

存在第一特征值$ \mathfrak{e} > 0 $和正的光滑特征函数对$ (\phi, \psi) $.

可以注意到, Grushin算子$ \Delta_{G} $是非对称的且在$ \{ 0 \} \times {{\Bbb R}} ^{N_2} $流行上是退化的,从而拉普拉斯算子的研究方法对Grushin算子不适用.本文需要克服由Grushin算子引起的一些新困难(如积分估计和建立解$ (u, v) $比较原理等).受文献[7, 16, 20]的启发,本文将证明加权的退化椭圆系统(1.1)解的Liouville型定理.

定理1.1  设$ u, v $是系统(1.1)的正稳定解.如果$ N_{a}, q > 1 $$ \beta\geq0 $满足条件

$ \begin{equation} N_{a} < 2+\left [4+\beta+\frac{4(\beta+2)}{q-1}\right ]\frac{\kappa_{0}}{2}, \end{equation} $

其中$ \kappa_{0} $是方程

$ \begin{equation} {\cal L} (q, \kappa): = \kappa^4-\frac{32q}{q+1}\kappa^2+\frac{32q(q+3)}{(q+1)^2}\kappa-\frac{64q}{(q+1)^2} = 0 \end{equation} $

的最大根.则系统(1.1)没有正稳定解.

注1.1  (1)使用稳定解准则(2.1)和Grushin算子性质,本文建立了系统(1.1)解的精确积分估计.

(2)通过发展文献[16, 21]中的方法,本文建立了一个新的比较原理,以及利用Bootstrap方法给出解的$ L^2 $ -估计,从而可以证明定理1.1.

推论1.1  设$ u $是双Grushin算子椭圆方程

的正稳定解.如果$ N_{a}, q > 1 $满足下面条件

其中$ \kappa_{0} $是如同定理1.1,则方程没有正稳定解.

本文$ C $总表示一般的正常数,与其它变量无关. $ B_R(x) $表示$ {{\Bbb R}} ^N $上以$ x $为球心$ R $为半径的开球.另记$ B_{R} = B_{R}(0) $.

2 预备知识

首先建立下面稳定解的两个准则.

引理2.1  设$ (u, v) $是椭圆系统(1.1)的非负稳定解,则下面两个不等式成立

$ \begin{equation} q\int_{\Omega} \omega u^{q-1}\zeta^{2} {\rm d}x \le \int_{\Omega}\frac{|\Delta_{G}\zeta|^{2}}{\omega} {\rm d}{\bf x}, \quad \forall \zeta \in C_0^2 (\Omega) \end{equation} $

$ \begin{equation} \sqrt{q}\int_{\Omega} \omega u^{\frac{q-1}{2}}\zeta^{2} {\rm d}x \le \int_{\Omega}|\nabla_{G}\zeta|^{2}{\rm d}x, \quad \forall \zeta \in C_0^1(\Omega). \end{equation} $

  用$ \frac{\zeta^{2}}{\phi} $乘以方程(1.3)的第二个方程,其中$ \zeta \in C_0^2 (\Omega) $,并分部积分可得

简单计算可得

因此有

下面证明(2.2)式.由稳定解的定义可得

分别用$ \zeta^{2} $$ \eta^{2} $乘上面两个不等式,其中$ \zeta, \eta \in C_0^1 (\Omega) $,积分可得

直接计算有

类似可得

则使用不等式$ a^{2}+b^{2}\geq2ab $且取$ \zeta = \eta $,有

结论得证.

为了方便,记$ {\cal D} (x): = 1+\|x\|^{2(a+1)} $.

引理2.2  对任意的$ \zeta, \eta \in C_0^4 ({{\Bbb R}} ^N) $,有下面不等式成立

$ \begin{eqnarray} \int_{{{\Bbb R}} ^N} \frac{\Delta_{G} \zeta\Delta_{G}(\zeta\eta^{2})}{\omega} {\rm d}x & = & \int_{{{\Bbb R}} ^N}\frac{[\Delta_{G}(\zeta\eta)]^{2}}{\omega} {\rm d}x \\ && +\int_{{{\Bbb R}} ^N}\frac{[-4(\nabla_{G}\zeta\cdot\nabla_{G}\eta)^{2}+2\zeta\Delta_{G}\zeta|\nabla_{G}\eta|^{2}]}{\omega}{\rm d}x \\ && +\int_{{{\Bbb R}} ^N}\frac{\zeta^{2}}{\omega} \Big [2\nabla_{G}(\Delta_{G}\eta)\cdot\nabla_{G}\eta+(\Delta_{G}\eta)^{2} \Big ]{\rm d}x \\ & & -2\beta \int_{{{\Bbb R}} ^N}\frac{\zeta^{2}\Delta_{G}\eta|x|^{a}}{{\cal D}(x) \omega} \left (\nabla_{G}\eta, (|x|^a x, y) \right ){\rm d}x \end{eqnarray} $

$ \begin{eqnarray} 2 \int_{{{\Bbb R}} ^N} \frac{|\nabla_{G}\zeta|^2|\nabla_{G}\eta|^2}{\omega} {\rm d}x & = & 2\int_{{{\Bbb R}} ^N}\frac{\zeta(-\Delta_{G}\zeta)|\nabla_{G}\eta|^{2}}{\omega}{\rm d}x +\int_{{{\Bbb R}} ^N}\frac{\zeta^{2}\Delta_{G}(|\nabla_{G}\eta|^{2})}{\omega}{\rm d}x \\ && -2\beta \int_{{{\Bbb R}} ^N}\frac{\zeta^{2}|x|^{a}}{{\cal D}(x) \omega} \left (\nabla_{G}(|\nabla_{G}\eta|^{2}), (|x|^{a}x, y) \right ){\rm d}{ x} \\ & & +\beta \int_{{{\Bbb R}} ^N}\frac{\zeta^{2}|\nabla_{G}\eta|^{2}|x|^{2a}}{{\cal D} (x) \omega} \left [(\beta+2a+2)\frac{\|x\|^{2(a+1)}}{{\cal D} (x)} -(2a+N_a) \right ]{\rm d}x.{}\\ \end{eqnarray} $

  简单计算可得

因此,综合上面三个等式可得等式(2.3)成立.

另一方面,容易验证

联合等式$ \frac{1}{2}\Delta_{G}(\zeta^{2}) = |\nabla_{G}\zeta|^{2}+\zeta\Delta_{G}\zeta $可得(2.4)式成立.

采用类似于文献[7, Lemma 2.4]和[20, Lemma 2.3]的方法,可以给出系统(1.1)稳定解的精确积分估计.

引理2.3  设$ (u, v) $是系统(1.1)的一个非负稳定解.则对任意$ R > 0 $,有

  设$ \xi_i \in C_c^{\infty}({{\Bbb R}}, [0, 1]) $, $ i = 1, 2 $使得在$ [-1, 1] $$ \xi_i = 1 $,在$ [-2^{1+(i-1)a}, 2^{1+(i-1)a}] $$ \xi_i = 0 $.对任意的$ R > 0 $,定义$ \varphi_R(x, y) = \xi_1(\frac{|x|}{R}) \xi_2(\frac{|y|}{R^{a+1}}) $.则存在与$ R $无关的常数$ C > 0 $,使得

$ u\varphi^{2}_{R} $乘以系统(1.1)的第二个方程并分部积分可得

把测试函数$ \zeta = u\varphi_{R} $插入(2.1)式中可得

则联合(2.3)和(2.4)式,有

因为$ \Delta_{G}(u\varphi_R) = -\omega v\varphi_R+2\nabla_{G}u\cdot\nabla_{G}\varphi_R+u\Delta_{G}\varphi_R $,联合上面不等式和引理 可得

$ \begin{eqnarray} \int_{{{\Bbb R}} ^N}\omega \left ( v^{2}+u^{q+1}\right )\varphi_R^{2}{\rm d}x &\le& C\int_{{{\Bbb R}} ^N}uv|\nabla_{G}\varphi_R|^{2}{\rm d}x \\ && +C\int_{{{\Bbb R}} ^N}\frac{u^{2}}{\omega}\Big [|\Delta_{G}(|\nabla_{G}\varphi_R|^{2})| +|\nabla_{G}(\Delta_{G}\varphi_R)\nabla_{G}\varphi_R | \Big ]{\rm d}x \\ && +C\int_{{{\Bbb R}} ^N}\frac{u^{2}|x|^{a}}{\omega {\cal D}(x)} \left (|\nabla_{G}(|\nabla_{G}\varphi_R|^{2})|+|\Delta_{G}\varphi_R \nabla_{G}\varphi_R |\right ) \left | (|x|^{a}x , y)\right | {\rm d}x \\ & &+C\int_{{{\Bbb R}} ^N}\frac{u^{2}|\nabla_{G}\varphi_R|^{2}|x|^{2a}}{\omega {\cal D} (x)}\left [\frac{\|x\|^{2(a+1)}}{{\cal D} (x)} +C \right ]{\rm d}x. \end{eqnarray} $

在不等式(2.5)中,用$ \varphi_R^m $代替$ \varphi_R $, $ m $充分大.容易验证

则联合上面两个不等式,有

其中

应用Hölder不等式可得

结论成立.

受文献[16, 21]的启发,我们建立新的比较原理.

引理2.4  设$ (u, v) $是系统(1.1)的正经典解,则不等式成立

  设$ \delta = \sqrt{\frac{2}{q+1}} $, $ \Psi = \delta u^{\frac{q+1}{2}}-v $.直接计算可得

$ \begin{eqnarray} \Delta_{G} \Psi = \frac{q-1}{2\delta}u^{\frac{q-3}{2}}|\nabla_{G}u|^{2}+\omega u^{q}-\delta^{-1}u^{\frac{q-1}{2}}\omega v \ge \delta^{-1}\omega u^{\frac{q-1}{2}}\Psi. \end{eqnarray} $

假设矛盾,则可设$ { } M = \sup_{{{\Bbb R}} ^{N}}\Psi, 0 < M\leq+\infty $.下面仅考虑两种情况.

情况1  $ \Psi $的上确界在无穷远处可以取到.

取截断函数$ \xi\in C_{0}^{2}({{\Bbb R}} ^N, [0, 1]) $,并设$ \varphi(x, y) = \xi^{m}(x, y) $,这里$ m > 0 $由后面确定.根据$ \nabla\xi $$ \Delta\xi $的有界性意味着

$ \varphi_{R}(x, y): = \varphi \left (\frac{x}{R}, \frac{y}{R^{a+1}} \right) $$ \Psi_{R}: = \varphi_{R}\Psi $,则

$ (x_{R}, y_{R}) $是最大值点,即$ \Psi_{R}(x_{R}, y_{R}) = \max\limits_{{{\Bbb R}} ^{n}}{\Psi_{R}}(x, y) $.显然

下面所有的估计式都在点$ (x_{R}, y_{R}) $取得.直接计算可得

不等式$ \Delta_{G}\Psi_{R}(x_{R}, y_{R})\leq0 $表明

联合上面两个不等式发现

因此联合不等式(2.6),有

选择$ m = \frac{2q+2}{q-1} $,则

这是一个矛盾.

情况2  存在$ (x_0, y_0) $使得$ M = \sup\limits_{{{\Bbb R}} ^{N}}\Psi = \Psi(x_0, y_0) > 0 $.

从不等式(2.6)容易推出

因此,至少存在一个指数$ i $,使得$ \frac{\partial^{2}}{\partial x_{i}^{2}}\Psi(x_0, y_0) > 0 $$ \frac{\partial^{2}}{\partial y_{i}^{2}}\Psi(x_0, y_0) > 0 $.显然这矛盾于$ \Psi(x_0, y_0) = \sup\limits_{{{\Bbb R}} ^{N}} \Psi $.

引理2.5[16]  设$ \Phi $是光滑函数, $ k_{a} = \frac{N_{a}}{N_{a}-2} $.则有

$ \begin{eqnarray} \left (\int_{B_{R}\times B_{R^{a+1}}}\Phi^{2k_{a}}{\rm d}x \right )^{\frac{1}{k_{a}}} &\le & CR^{2+N_{a}\left (\frac{1}{k_{a}}-1 \right )}\int_{B_{2R} \times {B_{(2R)^{a+1}}}}|\nabla_{G}\Phi|^{2}{\rm d}x \\ && +CR^{N_{a}\left (\frac{1}{k_{a}}-1 \right )}\int_{B_{2R} \times {B_{(2R)^{a+1}}}}\Phi^{2}{\rm d}x. \end{eqnarray} $

  设$ \varphi\in C_c^{2}({{\Bbb R}} ^{N}, [0, 1]) $是截断函数,使得在$ B_{1}\times B_{1} $上有$ \varphi = 1 $,在$ B_{2}\times B_{2}^{a+1} $$ \varphi = 0 $.使用Sobolev不等式[15],则

利用Rescaling方法意味着不等式(2.7)成立.

3 定理1.1的证明

引理3.1  设$ (u, v) $是系统(1.1)的正稳定解,则对任意的$ \kappa\geq2 $$ R > 0 $,有

其中$ k $满足

  设$ \xi_{i}\in C_c^2({{\Bbb R}}, [0, 1]) $, $ i = 1, 2 $,使得在$ [-1, 1] $$ \xi_{i} = 1 $,在$ [-2^{1+(i-1)a}, 2^{1+(i-1)a}] $$ \xi_{i} = 0 $.对任意的$ R > 0 $,定义$ \varphi_{R}(x, y) = \xi_{1}(\frac{|x|}{R})\xi_{2}(\frac{|y|}{R^{a+1}}) $.则存在与$ R $无关的常数$ C > 0 $,使得

在(2.2)式中取测试函数$ \zeta = u^{\frac{\lambda+1}{2}}\varphi_R $,从而有

直接计算

因此

$ \mu_{1}: = \frac{4\lambda\sqrt{q}}{(\lambda+1)^{2}} $,即

又在(2.2)式中插入$ \zeta = v^{\frac{\tau+1}{2}}\varphi_R $, $ \tau\geq1 $,则可得

类似的选择$ \mu_{2}: = \frac{4\tau\sqrt{q}}{(\tau+1)^{2}} $,有

因此

选择$ \lambda $$ \tau $满足关系式

使用Young不等式可得

类似的计算,有

则再结合上面三个不等式可知

如果$ \mu_1 \mu_2 > 1 $,则从引理2.4发现

下面,我们取$ \kappa = \tau+1 $并结合引理2.4可得

另一方面,因为$ \mu_{1} = \frac{4\lambda\sqrt{q}}{(\lambda+1)^{2}} $, $ \mu_{2} = \frac{4\tau\sqrt{q}}{(\tau+1)^{2}} $, $ 2\lambda = (q+1)\tau+q-1 $, $ \lambda+1 = \frac{(q+1)(\tau+1)}{2} $$ \kappa = \tau+1 $,有

直接计算表明

结论得证.

注3.1  可以注意到,当$ \kappa\in(2s_{0}^{-}, 2s_{0}^{+}) $, $ q > 1 $时,引理3.1成立(参见文献[7, Remark 3.2]),其中

而且,由(1.5)式定义的$ {\cal L} $在区间$ [2s_0^+, +\infty) $上有唯一根$ \kappa_0 $,使得对任意的$ \kappa \in [2s_0^+, \kappa_0) $,有$ {\cal L}(q, \kappa) < 0 $.

定理1.1的证明  用$ v^{2s-1} \varphi_R^2 $乘以系统(1.1)的第二个方程并分部积分可得

这里$ \varphi_{R} $的定义与引理3.1相同.取$ \Phi = v^s $,其中$ 2s $满足不等式(1.5),则引理3.1意味着

联合引理 可得

$ \begin{equation} \left (\int_{B_R \times B_{R^{a+1}}} v^{2sk_a} {\rm d}x \right )^{\frac{1}{k_a}} \le CR^{N_a \left (\frac{1}{k_a}-1 \right )} \int_{B_{2R} \times B_{(2R)^{a+1}}} v^{2s} {\rm d}x. \end{equation} $

$ m $是满足$ 2\kappa_{a}^{m-1} < \kappa < 2\kappa_{a}^{m} $的非负整数.定义一个递增迭代序列

$ V = v^2 $,迭代不等式(3.1)可得

现在取$ \gamma = 2k_a^m $$ \gamma < \frac{N_a}{N_a-2} \kappa_0 $,则

容易看出

等价于

因此从不等式(1.4)可得当$ R \to +\infty $时, $ \|v\|_{L^{\gamma}({{\Bbb R}} ^N)} = 0 $,即,在$ {{\Bbb R}} ^N $$ v \equiv 0 $,这是矛盾.结论得证.

参考文献

Farina A .

On the classification of solutions of Lane-Emden equation on unbounded domains of $\mathbb{R} ^N$

J Math Pures Appl, 2007, 87, 537- 561

DOI:10.1016/j.matpur.2007.03.001      [本文引用: 1]

Dávila J , Dupaigne L , Wang K L , Wei J C .

A monotonicity formula and a Liouville-type theorem for a forth order supercritical problem

Adv Math, 2014, 258, 240- 285

DOI:10.1016/j.aim.2014.02.034      [本文引用: 1]

Cowan C , Ghoussoub N .

Regularity of semi-stable solutions to fourth order nonlinear eigenvalue problems on general domains

Calc Var PDE, 2014, 49, 291- 305

DOI:10.1007/s00526-012-0582-4      [本文引用: 1]

Dupaigne L , Ghergu M , Goubet O , Warnault G .

The Gel'fand problem for the biharmonic operator

Arch Ration Mech Anal, 2013, 208, 725- 752

DOI:10.1007/s00205-013-0613-0      [本文引用: 1]

Souplet P H .

The proof of the Lane-Emden conjecture in four space dimensions

Adv Math, 2009, 221, 1409- 1427

DOI:10.1016/j.aim.2009.02.014      [本文引用: 1]

Hajlaoui H , Harrabi A , Ye D .

On stable solutions of biharmonic problems with polynomial growth

Pacific J Math, 2014, 270, 79- 93

DOI:10.2140/pjm.2014.270.79      [本文引用: 1]

Hu L G , Zeng J .

Liouville type theorems for stable solutions of the weighted elliptic system

J Math Anal Appl, 2016, 437, 882- 901

DOI:10.1016/j.jmaa.2016.01.032      [本文引用: 4]

Birindelli I , Capuzzo Dolcetta I , Cutri A .

Liouville theorems for semilinear equations on the Heisenberg group

Ann Inst Henri Poincare Non Linéaire Anal, 1997, 14, 295- 308

DOI:10.1016/S0294-1449(97)80138-2      [本文引用: 1]

Birindelli I , Prajapat J .

Nonlinear Liouville theorems in the Heisenberg group via the moving plane method

Comm Partial Differential Equations, 1999, 24, 1875- 1890

DOI:10.1080/03605309908821485     

张书陶, 韩亚洲.

Heisenberg群上移动球面法的应用-一类半线性方程的Liouville型定理

数学物理学报, 2017, 37A (2): 278- 286

DOI:10.3969/j.issn.1003-3998.2017.02.007     

Zhang S T , Han Y Z .

An application of the method of moving shpere in the Heiseberg group-Liouville type theorem of a class of semilinear equatoins

Acta Math Sci, 2017, 37A (2): 278- 286

DOI:10.3969/j.issn.1003-3998.2017.02.007     

Garofalo N , Vassilev D .

Symmetry properties of positive entire solutions of Yamabe-type equations on groups of Heisenberg type

Duke Math J, 2001, 106, 411- 448

DOI:10.1215/S0012-7094-01-10631-5      [本文引用: 1]

Franchi B , Gutiérrez C E , Wheeden R L .

Weighted Sobolev-Poincaré inequalities for Grushin type operators

Comm Partial Differential Equations, 1994, 19, 523- 604

DOI:10.1080/03605309408821025      [本文引用: 1]

Monti R , Morbidelli D .

Kelvin transform for Grushin operators and critical semilinear equations

Duke Math J, 2006, 131, 167- 202

DOI:10.1215/S0012-7094-05-13115-5      [本文引用: 1]

Monticelli D D .

Maximum principles and the method of moving planes for a class of degenerate elliptic linear operators

J Eur Math Soc, 2010, 12, 611- 654

[本文引用: 1]

Yu X H .

Liouville type theorem for nonlinear elliptic equation involving Grushin operators

Commun Contemp Math, 2015, 17, 1450050

DOI:10.1142/S0219199714500503      [本文引用: 2]

Duong A T , Phan Q H .

Liouville type theorem for nonlinear elliptic system involving Grushin operator

J Math Anal Appl, 2017, 454, 785- 801

DOI:10.1016/j.jmaa.2017.05.029      [本文引用: 6]

Zhao X J , Wang X H , Yu X H .

Morse index and Liouville type theorems for elliptic equation involving Grushin operator

Sci China: Math, 2014, 44, 711- 718

URL     [本文引用: 1]

Cowan C .

Liouville theorems for stable Lane-Emden systems with biharmonic problems

Nonlinearity, 2013, 26, 2357- 2371

DOI:10.1088/0951-7715/26/8/2357      [本文引用: 1]

Montenegro M .

Minimal solutions for a class of elliptic systems

Bull London Math Soc, 2005, 37, 405- 416

DOI:10.1112/S0024609305004248      [本文引用: 1]

Hu L G .

A monotonicity formula and Liouville-type theorems for stable solutions of the weighted elliptic system

Adv Differential Equations, 2017, 22, 49- 76

URL     [本文引用: 2]

Cheng Z , Huang G G , Li C M .

On the Hardy-Littlewood-Sobolev type systems

Commun Pure Appl Anal, 2016, 15, 2059- 2074

DOI:10.3934/cpaa.2016027      [本文引用: 2]

/