数学物理学报, 2020, 40(1): 1-9 doi:

论文

有界线性算子的Drazin逆的逆序律

王华1, 李金凤,1, 黄俊杰2

Reverse Order Law of the Drazin Inverse for Bounded Linear Operators

Wang Hua1, Li Jinfeng,1, Huang Junjie2

通讯作者: 王华

收稿日期: 2018-10-5  

基金资助: 国家自然科学基金.  11461049
国家自然科学基金.  11601249
内蒙古自然科学基金.  2018MS01002
内蒙古自然科学基金.  2017MS0118

Received: 2018-10-5  

Fund supported: 国家自然科学基金.  11461049
国家自然科学基金.  11601249
内蒙古自然科学基金.  2018MS01002
内蒙古自然科学基金.  2017MS0118

作者简介 About authors

李金凤,E-mail:1677904349@qq.com;黄俊杰,E-mail:hjjwh@sina.com , E-mail:1677904349@qq.com; hjjwh@sina.com

摘要

该文讨论了两个有界线性算子乘积的Drazin可逆性及其逆序律,分别在PPQP可交换(即P2QP=PQP2)和QQPQ可交换(即Q2PQ=QPQ2)等条件下,采用空间分解的方法得到了PQ的Drazin可逆性及其逆序律(PQD=QDPD成立的等价条件.

关键词: Drazin逆 ; 逆序律 ; 有界线性算子

Abstract

In this paper, we discuss the Drazin invertibility and reverse order law of the Drazin inverse for the product of two bounded linear operators. Under the assumptions that P commutes with PQP and Q commutes with QPQ, respectively, we derive the Drazin invertibility of PQ and some equivalent conditions for the reverse order law (PQ)D=QDPD to hold by using space decomposition technique.

Keywords: Reverse order law ; Drazin inverse ; Bounded linear operator

PDF (268KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

王华, 李金凤, 黄俊杰. 有界线性算子的Drazin逆的逆序律. 数学物理学报[J], 2020, 40(1): 1-9 doi:

Wang Hua, Li Jinfeng, Huang Junjie. Reverse Order Law of the Drazin Inverse for Bounded Linear Operators. Acta Mathematica Scientia[J], 2020, 40(1): 1-9 doi:

1 引言

Fredholm[1]于1903年首次提出了广义逆的概念,并称之为"伪逆".随着广义逆理论和应用研究的不断深入,又产生了各种不同类型的广义逆,例如Moore-Penrose逆[2-3]、Drazin逆[4]、群逆、K -逆($ K\in\{1, 2, 3, 4\})\mbox{、} $ Bott-Duffin逆[5]、core逆[6]、Mary逆[7]以及DMP逆[8]等.由于广义逆理论在算子理论、微分方程、控制论、马尔科夫链、人工智能以及模式识别等方面都有着重要的应用,因此,多年来,广义逆一直是人们研究的热点,学者们分别从复空间、Hilbert空间、Banach代数、半群以及环上等来研究广义逆,而且成果不断涌现.

对于可逆的算子或矩阵$ P, Q $而言, $ (PQ)^{-1} = Q^{-1}P^{-1} $,这便是普通逆的逆序律.但对于广义逆,其逆序律却不一定成立.于是,学者们纷纷对各种广义逆的逆序律进行了探讨.文献[9-12]分别在复空间, Hilbert空间和环上讨论了Moore-Penrose逆的逆序律成立的条件;文献[13-16]分别在复空间, Hilbert空间, Banach代数和环上研究了Drazin逆的逆序律成立的充分必要条件;文献[17-18]在半群、环和Hilbert空间上分别给出了群逆的逆序律成立的等价条件;文献[19-21]分别在复空间和Hilbert空间上讨论了K -逆的逆序律.

本文采用空间分解的方法在某些交换条件下给出了Banach空间中两个有界线性算子的Drazin逆的逆序律成立的等价条件,这推广了文献[16]中的结果.

为便于叙述,文中通篇采用以下记号:设$ {\cal X, Y} $是复Banach空间,记$ B({\cal X, Y}) $是从$ {\cal X} $$ {\cal Y} $的所有有界线性算子的集合; $ B({\cal X}) $是从$ {\cal X} $$ {\cal X} $的所有有界线性算子的集合. $ {\Bbb N} $表示数集$ \{1, 2, \cdots\} $.

定义1.1  对于算子$ T\in{\cal B}({\cal X}) $,若存在$ T^{D}\in{\cal B}({\cal X}) $使得方程组

成立,则称$ T $是Drazin可逆的,其中$ T^{D} $称为$ T $的Drazin逆,并称最小的非负整数$ k $$ T $的指标,记为$ {{\rm ind}}(T) $.$ T $是Drazin可逆时,记$ T^{\pi} = I-TT^D $,则$ T $在空间分解$ {\cal X} = {\cal N}(T^{\pi})\oplus {\cal R}(T^{\pi}) $下具有矩阵形式$ T = \left(\begin{array}{cc} T_1 & 0 \\ 0 & N_1 \end{array}\right), $其中$ T_1 $是可逆的, $ N_1^{{{\rm ind}}(T)} = 0 $,且$ T^D = \left(\begin{array} {cc}T_1^{-1} & 0 \\ 0 & 0 \end{array}\right) $.

引理1.2[22, Theorem 5.5]  设$ P, Q\in{\cal B}({\cal X}) $是Drazin可逆的,且$ PQ = QP $,那么$ P, Q, $$ P^D, $$ Q^D $都是可交换的,且$ (PQ)^D = Q^DP^D = P^DQ^D. $

引理1.3  令$ A\in{\cal B}({{\cal X}}) $, $ D\in{\cal B}({{\cal Y}}) $, $ C\in{\cal B}({\cal X, Y}) $,且$ M_1 = \left(\begin{array}{cc} A\ & 0\\ C\ & D \end{array}\right), $$ M_2 = \left(\begin{array}{cc} D\ & C\\ 0\ & A \end{array}\right). $

$ \rm(1) $[23, Lemma 2.4]$ A, D $$ M_1 $中有两个算子是Drazin可逆的,则第三个算子也是Drazin可逆的.

$ \rm(2) $[24, Theorem 5.1]$ A, D $是Drazin可逆的, $ {{\rm ind}}(A) = s $$ {{\rm ind}}(D) = t $,则

其中$ X = \sum\limits_{i = 0}^{s-1} (D^D)^{i+2}CA^iA^\pi+D^\pi\sum\limits_{i = 0}^{t-1} D^iC(A^D)^{i+2}-D^DCA^D. $

引理1.4  [25, Theorem 4.2]$ A\in{\cal B}({\cal X}) $, $ D\in{\cal B}({\cal Y}) $, $ B\in{\mathcal B}({\cal Y}, {\cal X}) $, $ C\in{\cal B}({\cal X, Y}) $,且$ N = \left(\begin{array}{cc} A\ & B\\ C\ & D \end{array}\right). $$ A, D $是Drazin可逆的,且$ BC = 0, BD = 0, $$ N $是Drazin可逆的,且

其中$ X $同引理1.3.

2 主要结果及证明

下面给出讨论逆序律时所需的必要结论.

定理2.1  设$ N, Q\in{\cal B}({\cal X}) $,且$ N^2QN = NQN^2 $.$ k\in{{\Bbb N}}, \ n = 2, 3, \cdots $时,下列结论成立.

$ \rm(1) $$ NQN^2Q = NQNQN $,则

$ \rm(2) $$ N^2Q^2 = NQNQ $,则

  只证明$ \rm(1) $, $ \rm(2) $的证明类似.

$ \rm(1) $$ N^2QN = NQN^2 $$ NQN^2Q = NQNQN $,有$ NQN^kQN = N^kQNQN = N^{k+1}QNQ. $那么

证毕.

下面给出本文的主要结果.

定理2.2  设$ P, Q\in{\cal B}({\cal X}), $$ P $为Drazin可逆,且$ P^2QP = PQP^2 $.

$ P, Q $满足下列条件之一

$ \rm(i) $$ PQPQ = QPQP $; $ \rm(ii) $$ QP^2Q = QPQP $; $ \rm(iii) $$ P^2Q^2 = PQPQ $,

则当$ {\cal M} $中任一元素是Drazin可逆时, $ {\cal M} $中其它元素都是Drazin可逆的.

  令$ {{\rm ind}}(P) = r $,则在空间分解$ {\cal H} = {\cal N}(P^{\pi})\oplus {\cal R}(P^{\pi}) $下, $ P $具有如下形式

$ \begin{eqnarray} P = \left(\begin{array}{cc} P_1{\quad} & 0 \\ 0{\quad} & N_1 \end{array}\right), \end{eqnarray} $

其中$ P_1 $是可逆的, $ N_1^r = 0 $,且$ P^D = \left(\begin{array}{cc} P_1^{-1}\ & 0 \\ 0\ & 0 \end{array}\right). $$ Q $在上述空间分解下的矩阵形式为

$ \begin{equation} Q = \left(\begin{array}{c c} Q_1{\quad} & Q_2 \\ Q_3{\quad} & Q_4 \end{array}\right). \end{equation} $

$ P^2QP = PQP^2 $,得到

$ \begin{equation} P_1^{2} Q_1P_1 = P_1Q_1P_1^{2}, \ \ \ \ N_1^{2} Q_4N_1 = N_1Q_4N_1^{2} \end{equation} $

$ \begin{equation} P_1^{2} Q_2N_1 = P_1Q_2N_1^{2}, \ \ \ \ N_1^{2} Q_3P_1 = N_1Q_3P_1^{2}. \end{equation} $

注意到$ P_1 $是可逆的,根据(2.3)和(2.4)式,有

$ \begin{equation} P_1Q_1 = Q_1P_1 \end{equation} $

进而, $ Q_2N_1 = P_1^{-r}Q_2N_1^{r+1}, \ N_1Q_3 = N_1^{r+1}Q_3P_1^{-r}. $显然

$ \begin{eqnarray} Q_2N_1 = 0, \ \ \ N_1Q_3 = 0. \end{eqnarray} $

因此

$ \begin{eqnarray} P^{k}Q = \left(\begin{array}{cc} P_1^{k}Q_1\ & P_1^{k}Q_2 \\ 0\ & N_1^{k}Q_4 \end{array}\right), \ \ \ \ \ P^{k}QP = \left(\begin{array}{cc} P_1^{k+1}Q_1\ & 0 \\ 0\ & N_1^{k}Q_4N_1 \end{array}\right), k\in{\Bbb N}. \end{eqnarray} $

$ P, Q $满足条件$ \rm(i) $,即$ PQPQ = QPQP $,则有

$ \begin{eqnarray} \left(\begin{array}{cc} P_1 Q_1P_1Q_1\ & P_1 Q_1P_1Q_2 \\ 0\ & N_1Q_4N_1Q_4 \end{array}\right) = \left(\begin{array}{c c} Q_1P_1Q_1P_1\ & 0 \\ Q_3P_1Q_1P_1\ & Q_4N_1Q_4N_1 \end{array}\right), \end{eqnarray} $

于是

$ \begin{equation} N_1Q_4N_1Q_4 = Q_4N_1Q_4N_1. \end{equation} $

由(2.5)式以及引理1.2可知$ P_1^{k}Q_1, P_1^{k+1}Q_1 $是Drazin可逆的充分必要条件是$ Q_1 $是Drazin可逆的.而(2.3)和(2.9)式知$ N_1Q_4N_1Q_4N_1 = N_1Q_4N_1^2Q_4 $,进而由定理2.1$ \rm(1) $表明$ N_1^{k}Q_4 $$ N_1^{k}Q_4N_1 $都是幂零的.因此,根据引理1.3$ \rm(1) $, $ P^{k}Q, P^{k}QP $是Drazin可逆的充分必要条件是$ Q_1 $是Drazin可逆的.

对于$ P^DPQ $, $ P^DQP $, $ QP^DP $以及$ PP^DPQ $,经过计算,得到$ P^DPQ = \left(\begin{array}{cc} Q_1\ & Q_2 \\ 0\ & 0 \end{array}\right) $, $ QP^DP = \left(\begin{array}{cc} Q_1\ & 0 \\ Q_3\ & 0 \end{array}\right) $, $ P^DQP = \left(\begin{array}{cc} P_1^{-1}Q_1P_1\ & 0 \\ 0\ & 0 \end{array}\right) $, $ PP^DPQ = \left(\begin{array}{cc} P_1Q_1\ & P_1Q_2 \\ 0\ & 0 \end{array}\right) $.显然, $ P^DPQ $, $ P^DQP $, $ QP^DP $$ PP^DPQ $是Drazin可逆的充分必要条件是$ Q_1 $是Drazin可逆的.

$ P, Q $满足条件$ \rm(ii) $,即$ QP^2Q = QPQP $,则有

$ \begin{eqnarray} \left(\begin{array}{cc} Q_1P_1^2Q_1\ & Q_1P_1^2Q_2 \\ Q_3P_1^2Q_1\ & Q_3P_1^2Q_2 + Q_4N_1^2Q_4 \end{array}\right) = \left(\begin{array}{cc} Q_1P_1Q_1P_1\ & 0 \\ Q_3P_1Q_1P_1\ & Q_4N_1Q_4N_1 \end{array}\right), \end{eqnarray} $

即有

上式两边同时左乘$ N_1 $,再由(2.6)式,可得

$ \begin{eqnarray} N_1Q_4N_1^2Q_4 = N_1Q_4N_1Q_4N_1. \end{eqnarray} $

这样, (2.3)和(2.11)式以及定理2.1$ \rm(1) $表明$ N_1^{k}Q_4 $$ N_1^{k}Q_4N_1 $都是幂零的.余下的证明类似于条件$ \rm(i) $.

$ P, Q $满足条件$ \rm(iii) $,即$ P^2Q^2 = PQPQ $,则有

$ \begin{eqnarray} \left(\begin{array}{cc} P_1^2 Q_1^2 + P_1^2 Q_2Q_3\ &P_1^2 Q_1Q_2+P_1^2 Q_2Q_4 \\ N_1^2Q_4Q_3&N_1^2Q_4^2 \end{array}\right) = \left(\begin{array}{cc} P_1 Q_1P_1Q_1\ & P_1 Q_1P_1Q_2 \\ 0 &N_1Q_4N_1Q_4 \end{array}\right), \end{eqnarray} $

那么

$ \begin{equation} N_1^2Q_4^2 = N_1Q_4N_1Q_4. \end{equation} $

这样, (2.3)和(2.13)式以及定理2.1$ \rm(2) $表明$ N_1^{k}Q_4 $$ N_1^{k}Q_4N_1 $都是幂零的.余下的证明类似于条件$ \rm(i) $.

综上,定理得证.

类似于定理2.2,可得到如下结论.

定理2.3  设$ P, Q\in{\cal B}({\cal X}), $$ Q $为Drazin可逆,且$ QPQ^2 = Q^2PQ $.

$ P, Q $满足下列条件之一: $ \rm(i) $$ PQ^2P = QPQP $; $ \rm(ii) $$ P^2Q^2 = PQPQ $,则当$ {\cal N} $中任一元素是Drazin可逆时, $ {\cal N} $中其它元素都是Drazin可逆的.

定理2.4  设$ P, Q\in{\cal B}({\cal X}), $$ P $为Drazin可逆,且$ P^2QP = PQP^2 $.$ P, Q $还满足$ PQPQ = QPQP $$ QP^2Q = QPQP $,则当$ {\cal M} $中任一元素是Drazin可逆时, $ PQ $是Drazin可逆的,且$ (PQ)^D = (PQ)^DPP^D = PP^D(PQ)^D $.进一步,当$ Q $是Drazin可逆时,有

$ \rm(i) $$ PP^DPQ = PQPP^D $,则下列逆序律等价

$ \rm(a) $$ (PQ)^D = Q^DP^D $;

$ \rm(b) $$ (PQ)^DP = Q^DP^DP $;

$ \rm(c) $$ (P^DPQ)^D = Q^DP^DP $;

$ \rm(d) $$ P(PQ)^D = Q^DP^DP $;

$ \rm(e) $$ P^DQ^D = Q^DP^D $.

$ \rm(ii) $$ P^DPQ = QPP^D $,则逆序律成立:$ (PQ)^D = Q^DP^D = P^DQ^D $.

  根据定理2.2的证明知$ PQ $是Drazin可逆的, $ PQ = \left(\begin{array}{cc} P_1Q_1\ & P_1Q_2 \\ 0\ & N_1Q_4 \end{array}\right), $$ N_1Q_4 $是幂零的,从而,由引理1.3得

其中$ X_1 = \sum\limits_{i = 0}^{{{\rm ind}}(N_1Q_4)-1} ((P_1Q_1)^D)^{i+2}P_1Q_2(N_1Q_4)^i. $从(2.8)和(2.10)式,均能得到

$ P_1 $的可逆性以及(2.5)式,便得到

$ \begin{equation} Q_1Q_2 = 0, \end{equation} $

同时,注意到$ (P_1Q_1)^D = ((P_1Q_1)^D)^2P_1Q_1 $,这样得到$ X_1 = 0 $.从而

$ \begin{eqnarray} (PQ)^D = \left(\begin{array}{cc} (P_1Q_1)^D \ & 0 \\ 0\ &0 \end{array}\right) = \left(\begin{array}{cc} Q_1^D P_1 ^D\ & 0 \\ 0\ &0 \end{array}\right) = (PQ)^DPP^D = PP^D(PQ)^D. \end{eqnarray} $

$ \rm(i) $$ PP^DPQ = PQPP^D $,则$ Q_2 = 0 $,此时$ Q = \left(\begin{array}{cc} Q_1\ & 0 \\ Q_3\ & Q_4 \end{array}\right). $由已知条件$ Q $是Drazin可逆的,且根据定理2.2的证明知$ Q_1 $是Drazin可逆的,于是,由引理1.3知$ Q_4 $是Drazin可逆的.进而,由引理1.3知$ Q^D = \left(\begin{array}{cc} Q_1^D\ & 0 \\ X_2\ & Q_4^D \end{array}\right). $其中

$ \begin{eqnarray} X_2 = \sum\limits_{i = 0}^{{{\rm ind}}(Q_1)-1} (Q_4^D)^{i+2}Q_3Q_1^iQ_1^\pi+Q_4^\pi\sum\limits_{i = 0}^{{{\rm ind}}(Q_4)-1} Q_4^iQ_3(Q_1^D)^{i+2}-Q_4^DQ_3Q_1^D. \end{eqnarray} $

由此, $ Q^D P^D = \left(\begin{array}{cc} Q_1^DP_1^{-1}\ & 0 \\ X_2P_1^{-1}\ & 0 \end{array}\right). $再根据(2.15)式,显然, $ (PQ)^D = Q^DP^D $的充分必要条件是$ X_2 = 0 $.经过简单计算,有

综上,结论$ \rm(i) $得证.

$ \rm(ii) $$ P^DPQ = QPP^D $,则$ Q_2 = Q_3 = 0 $,此时, $ Q = \left(\begin{array}{cc} Q_1\ & 0 \\ 0\ & Q_4 \end{array}\right). $那么, $ Q^D = \left(\begin{array}{cc} Q_1^D\ & 0 \\ 0\ & Q_4^D \end{array}\right). $显然, $ (PQ)^D = P^DQ^D = Q^DP^D $.

类似于定理2.4,可得到如下结论.

定理2.5  设$ P, Q\in{\cal B}({\cal X}), $$ Q $为Drazin可逆.若$ QPQ^2 = Q^2PQ $$ PQ^2P = QPQP $,则当$ {\cal N} $中任一元素是Drazin可逆时, $ PQ $是Drazin可逆的,且$ (PQ)^D = (PQ)^DQQ^D = QQ^D(PQ)^D $.进一步,当$ P $是Drazin可逆时,有

$ \rm(i) $$ Q^DQPQ = PQQ^DQ $,则下列逆序律等价

$ \rm(a) $$ (PQ)^D = Q^DP^D $;

$ \rm(b) $$ (PQ)^DQ = QQ^DP^D $;

$ \rm(c) $$ (PQQ^D)^D = QQ^DP^D $;

$ \rm(d) $$ Q(PQ)^D = QQ^DP^D $;

$ \rm(e) $$ P^DQ^D = Q^DP^D $.

$ \rm(ii) $$ PQQ^D = QQ^DP $,则逆序律成立: $ (PQ)^D = Q^DP^D = P^DQ^D $.

定理2.6  设$ P, Q\in{\cal B}({\cal X}), $$ P $为Drazin可逆, $ P^2QP = PQP^2 $,且$ P^2Q^2 = PQPQ $.$ {\cal M} $中任一元素是Drazin可逆的,则$ PQ $是Drazin可逆的,且$ (PQ)^D = PP^D(PQ)^D $.进一步,当$ P^{\pi}Q $是Drazin可逆时,下列逆序律等价

$ \rm(i) $$ (PQ)^D = Q^DP^D $;

$ \rm(ii) $$ (P^DPQ)^D = Q^DP^DP $;

$ \rm(iii) $$ P(PQ)^D = Q^DP^DP $;

$ \rm(iv) $$ P^DQ^D = Q^DP^D $.

  根据定理2.2的证明知$ PQ $是Drazin可逆的, $ PQ = \left(\begin{array}{cc} P_1Q_1\ & P_1Q_2 \\ 0\ & N_1Q_4 \end{array} \right), $$ N_1Q_4 $是幂零的,从而,由引理1.3得

$ \begin{eqnarray} (PQ)^D = \left(\begin{array}{cc} (P_1Q_1)^D\ & X_3 \\ 0\ &0 \end{array} \right), \end{eqnarray} $

其中

另外, $ (PQ)^D = PP^D(PQ)^D $是显然的.

根据$ Q $的分解(2.2)以及$ P^{\pi} Q $是Drazin可逆的,知$ Q_1 $$ Q_4 $均是Drazin可逆的.再由(2.12)式以及(2.5)式得到

$ \begin{equation} Q_2Q_3 = 0, \ \ \ \ Q_2Q_4 = 0, \end{equation} $

因此,根据引理1.4, $ Q $是Drazin可逆的,且

其中$ X_2 $同(2.17)式.由此, $ Q^D P^D = \left(\begin{array}{cc} Q_1^DP_1^{-1}\ & 0 \\ X_2P_1^{-1}\ & 0 \end{array} \right). $再根据(2.17)式,显然, $ (PQ)^D = Q^DP^D $的充分必要条件是$ X_2 = 0 $$ Q_1^D Q_2 = 0 $.经过简单计算,有

综上,结论得证.

类似于定理2.6,可得到如下结论.

定理2.7  设$ P, Q\in{\cal B}({\cal X}), $$ Q $为Drazin可逆. $ QPQ^2 = Q^2PQ $,且$ P^2Q^2 = PQPQ $.$ {\cal N} $中任一元素是Drazin可逆的,则$ PQ $是Drazin可逆的,且$ (PQ)^D = (PQ)^DQQ^D $.进一步,当$ PQ^{\pi} $是Drazin可逆时,下列逆序律等价

$ \rm(i) $$ (PQ)^D = Q^DP^D $;

$ \rm(ii) $$ (PQQ^D)^D = QQ^DP^D $;

$ \rm(iii) $$ (PQ)^DQ = QQ^DP^D $;

$ \rm(iv) $$ P^DQ^D = Q^DP^D $.

由定理2.6,可得到下列推论.

推论2.8[16]  设$ P, Q\in{\cal B}({\cal X}), $$ P, Q $为Drazin可逆(或$ P, P^\pi Q $为Drazin可逆),且$ P^2Q = PQP $.$ {\cal M} $中任一元素是Drazin可逆的,则$ PQ $是Drazin可逆的, $ (PQ)^D = PP^D(PQ)^D $,且下列逆序律等价

$ \rm(i) $$ (PQ)^D = Q^DP^D $;

$ \rm(ii) $$ (P^DPQ)^D = Q^DP^DP $;

$ \rm(iii) $$ P(PQ)^D = Q^DP^DP $;

$ \rm(iv) $$ P^DQ^D = Q^DP^D $;

$ \rm(v) $$ (PQ)^DP = Q^DP^DP $.

  根据定理2.6的证明,当$ P^2Q = PQP $时, $ Q_2 = 0 $.此时,只需注意到$ PQ, P^\pi Q, Q $三者中任意两个是Drazin可逆的,则第三个也是Drazin可逆的.

推论2.9  设$ P, Q\in{\cal B}({\cal X}), $$ P, Q $为Drazin可逆(或$ P, P^\pi Q $为Drazin可逆), $ PQP = QP^2 = P^2Q $.$ {\cal M} $中任一元素是Drazin可逆的,则$ PQ $是Drazin可逆的,且逆序律成立: $ (PQ)^D = P^DQ^D = Q^DP^D $.

  根据定理2.6的证明,由$ PQP = QP^2 $$ Q_3 = 0 $;再由$ QP^2 = P^2Q $$ Q_2 = 0 $.此时, $ (P^DPQ)^D = Q^DP^DP $显然成立.根据定理2.6得证.

由定理2.7,可得到下列推论.

推论2.10[16]  设$ P, Q\in{\cal B}({\cal X}), $$ P, Q $为Drazin可逆(或$ PQ^{\pi}, Q $为Drazin可逆),且$ PQ^2 = QPQ $.$ {\cal N} $中任一元素是Drazin可逆的,则$ PQ $是Drazin可逆的, $ (PQ)^D = (PQ)^DQQ^D $,且下列逆序律等价

$ \rm(i) $$ (PQ)^D = Q^DP^D $;

$ \rm(ii) $$ (PQQ^D)^D = QQ^DP^D $;

$ \rm(iii) $$ (PQ)^DQ = QQ^DP^D $;

$ \rm(iv) $$ P^DQ^D = Q^DP^D $;

$ \rm(v) $$ Q(PQ)^D = QQ^DP^D $.

参考文献

Fredholm I .

Sur une classe d'équations fonctionnelles

Acta Mathematica, 1903, 27 (1): 365- 390

[本文引用: 1]

Moore E H .

On the reciprocal of the general algebraic matrix

Bull Amer Math Soc, 1920, 26, 394- 395

[本文引用: 1]

Penrose R .

A generalized inverse for matrices

Mathematical Proceedings of the Cambridge Philosophical Society, 1955, 51 (3): 406- 413

URL     [本文引用: 1]

Drazin M P .

Pseudo-Inverses in associative rings and semigroups

American Mathematical Monthly, 1958, 65 (7): 506- 514

URL     [本文引用: 1]

Bott R , Duffin R J .

On the algebra of networks

Transactions of the American Mathematical Society, 1953, 74 (1): 99- 109

URL     [本文引用: 1]

Baksalary O M , Trenkler G .

Core inverse of matrices

Linear Multilinear Algebra, 2010, 58 (6): 681- 697

URL     [本文引用: 1]

Mary X .

On generalized inverses and Green's relations

Linear Algebra Appl, 2011, 434 (8): 1836- 1844

URL     [本文引用: 1]

Malik S B , Thome N .

On a new generalized inverse for matrices of an arbitrary index

Appl Math Comput, 2014, 226 (1): 575- 580

URL     [本文引用: 1]

Greville T N E .

Note on the generalized inverse of a matrix product

Siam Review, 1966, 8 (4): 518- 521

URL     [本文引用: 1]

Izumino S .

The product of operators with closed range and an extension of the reverse order law

Tohoku Mathematical Journal, 1982, 34 (1): 43- 52

URL    

Hartwig R E .

The reverse order law revisited

Linear Algebra Appl, 1986, 76, 241- 246

URL    

Boasso E , Cvetković-Ilić D S , Harte R .

On weighted reverse order laws for the Moore-Penrose inverse and K-Inverses

Communications in Algebra, 2012, 40 (3): 959- 971

URL     [本文引用: 1]

Wang G R , Xu Z L .

The reverse order law for the W-weighted Drazin inverse of multiple matrices product

J Appl Math Computing, 2006, 21 (1/2): 239- 248

URL     [本文引用: 1]

Mosić D .

Reverse order laws for the generalized Drazin inverse in Banach algebras

J Math Anal Appl, 2015, 429 (1): 461- 477

URL    

Mosić D .

Reverse order laws for the generalized strong Drazin inverses

Appl Math Comput, 2016, 284, 37- 46

URL    

Wang X N , Yu A Q , Li T F , Deng C Y .

Reverse order laws for the Drazin inverses

J Math Anal Appl, 2016, 444 (1): 672- 689

URL     [本文引用: 4]

Mary X .

Reverse order law for the group inverse in semigroups and rings

Commun Algebra, 2015, 43 (6): 2492- 2508

URL     [本文引用: 1]

Deng C Y. Reverse order law for the group inverses, J Math Anal Appl, 2011, 382(2):663-671

[本文引用: 1]

Werner H J. When is B-A- is a generalized inverse of AB? Linear Algebra Appl, 1994, 210:255-263

[本文引用: 1]

De P A R , Musheng W .

Reverse order law for reflexive generalized inverses of products of matrices

Linear Algebra Appl, 1998, 277, 299- 311

URL    

Liu X J, Wu S X, Cvetković-ilić D S. New results on reverse order law for {1, 2, 3}.-and {1, 2, 4}-inverses of bounded operators. Mathematics of Computation, 2013, 82(283):1597-1607

[本文引用: 1]

Koliha J J .

A generalized Drazin inverse

Glasg Math J, 1996, 38 (3): 367- 381

URL     [本文引用: 1]

Koliha J J , CvetkovićIlić D S , Deng C Y .

Generalized Drazin invertibility of combinations of idempotents

Linear Algebra Appl, 2012, 437 (9): 2317- 2324

URL     [本文引用: 1]

Djordjević D S , Stanimirović P S .

On the generalized Drazin inverse and generalized resolvent

Czechoslovak Math J, 2001, 51 (3): 617- 634

URL     [本文引用: 1]

Castro-González N , Dopazo E , Martínez-Serrano M F .

On the Drazin inverse of the sum of two operators and its application to operator matrices

J Math Anal Appl, 2009, 350 (1): 207- 215

URL     [本文引用: 1]

/