数学物理学报, 2019, 39(6): 1514-1531 doi:

论文

一类特殊混合跳扩散Black-Scholes模型的欧式回望期权定价

杨朝强,1,2

Pricing European Lookback Option in a Special Kind of Mixed Jump-Diffusion Black-Scholes Model

Yang Zhaoqiang,1,2

收稿日期: 2018-04-2  

基金资助: 兰州财经大学科研基金项目.  Lzufe2019C-009
兰州财经大学科研基金项目.  Lzufe2017C-09

Received: 2018-04-2  

Fund supported: the Research Project of Lanzhou University of Finance and Economics.  Lzufe2019C-009
the Research Project of Lanzhou University of Finance and Economics.  Lzufe2017C-09

作者简介 About authors

杨朝强,E-mail:woyuyanjiang@163.com,yangzq@lzufe.edu.cn , E-mail:woyuyanjiang@163.com; yangzq@lzufe.edu.cn

摘要

在混合跳扩散Black-Scholes(B-S)模型下研究了欧式固定履约价的回望期权定价问题.结合Merton假设条件以及风险资产所满足的随机微分方程的Cauchy初值问题,利用多尺度参数摄动方法求解了欧式回望期权所适合的抛物型随机偏微分方程,给出了欧式固定履约价的回望期权的近似定价公式,并利用Feynman-Kac公式分析了近似公式的误差估计.数值模拟研究表明,当混合跳扩散模型的波动率为常数时,欧式回望期权是有精确解的,并且随着模拟阶数的增大,回望期权价格的近似解逐渐地逼近期权价格的精确解.

关键词: 混合跳扩散分数布朗运动 ; 多尺度参数摄动方法 ; 欧式固定履约回望期权 ; Feynman-Kac公式 ; 误差估计

Abstract

This article considers the pricing problem of European fixed strike lookback options under the environment of mixed jump-diffusion fractional Brownian motion. Under the conditions of Merton assumptions, we analyze the Cauchy initial problem of stochastic parabolic partial differential equations which the risky asset satisfied, by using the perturbation method of multiscale-parameter, the approximate pricing formulae of European lookback options are given by solving stochastic parabolic partial differential equations. Then the error estimates of the approximate solutions are given by using Feynman-Kac formula. Numerical simulation illustrate that the European lookback options have exact solutions when the volatilities are constant, and as the order of simulation increases, the approximate solutions are gradually approximates the exact solutions.

Keywords: Mixed jump-diffusion fractional Brownian motion ; Perturbation method of multiscale-parameter ; European fixed strike lookback options ; Feynman-Kac formula ; Error estimates

PDF (504KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

杨朝强. 一类特殊混合跳扩散Black-Scholes模型的欧式回望期权定价. 数学物理学报[J], 2019, 39(6): 1514-1531 doi:

Yang Zhaoqiang. Pricing European Lookback Option in a Special Kind of Mixed Jump-Diffusion Black-Scholes Model. Acta Mathematica Scientia[J], 2019, 39(6): 1514-1531 doi:

1 引言

近些年来,用分数布朗运动来研究金融数学模型已经成为一个重要的发展方向.由于分数布朗运动的“尖峰厚尾性”和“长程记忆性”表现出Gussian分布的特性,所以用Gussian分布能够更好的刻画金融资产模型,相应的随机分析理论见文献[1-3].然而, Tomas[4]]等人的研究表明,在使用分数布朗运动来刻画金融资产价格的波动时仍存在一些不足,基于Wick积分的分数布朗运动在应用于金融计算时受到很大的限制,同时定义一个合适的关于分数布朗运动的随机积分是比较困难的.于是,考虑使用混合分数布朗运动来刻画金融资产的波动是合理的(如Xiao[5], Sun[6], He[7]等). Cheridito[8]最早把布朗运动和分数布朗运动组合在一起研究了欧式期权的定价; Mounir[9]研究了混合分数布朗运动样本轨道的Holder连续性和自相似性;由于分数布朗运动的Itô公式所建立的B-S模型已经远远超越了B-S模型的定义和属性,学者们发现所建立的分数B-S模型不能准确地描述资产的浮动收益和金融市场的波动情形[10].事实上,由于分数布朗运动的自相似性、厚尾性和长程关联性,使得分数布朗运动既不是Markov过程又不是半鞅,这给随机分析和随机计算带来了极大的困难,于是有些学者提出用混合跳扩散分数布朗运动(mjd-fBm)模型来刻画金融市场的波动行为(如Foad[11, 12], Rao[13], Miao[14], Yang[15]等).

关于具有复杂收益结构的奇异型金融衍生证券定价的研究成果并不多见,本文拟通过一个基于标准布朗运动、分数布朗运动、Poisson过程的线性组合的混合跳扩散B-S模型,结合Merton假设条件以及风险资产所满足的随机微分方程的Cauchy初值问题,利用多尺度参数摄动方法(张伟江[16], Nesterov[17], Ma[18], Butuzov[19]等),求解了欧式回望期权所适合的抛物型随机偏微分方程,给出了欧式固定履约价的回望期权的近似定价公式,并利用Feymann-Kac公式分析了近似公式的误差估计.结合已有的成果(Lai[20], Eberlein[21], Leung[22], Park[23], Fuh[24],杨朝强[25, 26]等),文章最后对近似公式作了数值模拟分析.

2 混合跳扩散B-S模型

定义2.1[8]  设Hurst参数为$ H $的分数布朗运动$ \{B_t^H\}_{t\geq0} $是一个连续Gussian过程,且$ H\in(0, 1) $,定义含有参数$ \alpha, \beta $$ H $的混合分数布朗运动$ M_t^H $,是由Hurst参数$ H $的分数布朗运动和标准布朗运动的线性组合,定义概率空间$ (\Omega, \mathfrak{F}, \mathbb{P}) $,对任意的$ t\in\mathbb{R}^+ $,满足

其中$ B_t $是标准布朗运动, $ B_t^H $是含有参数$ H $的独立分数布朗运动, $ \alpha, \beta $是两个给定的实数且满足$ (\alpha, \beta)\neq(0, 0) $.

性质2.1[9]  混合分数布朗运动$ M_t^H $具有如下性质

(ⅰ)对任意的$ H \in(0, 1)\setminus 1/2 $, $ M_t^H $是中心高斯过程;

(ⅱ) $ M_0^H = 0 $, ($ \mathbb{P} $-a.s.);

(ⅲ)对任意的$ t, s \in \mathbb{R}^+ $, $ M_t^H(\alpha, \beta) $$ M_s^H(\alpha, \beta) $的协方差函数为

其中$ \wedge $表示两个数中取最小;

(ⅳ)对任意的$ h > 0 $, $ M_t^H(\alpha, \beta) $的独立平稳增量具有自相似性

其中$ \dot{ = } $表示具有相同的属性和规律;

(ⅴ)当$ \frac{1}{2} < H < 1 $时, $ M_t^H(\alpha, \beta) $的独立平稳增量是正相关的;当$ H = \frac{1}{2} $时, $ M_t^H(\alpha, \beta) $的独立平稳增量是不相关的;当$ 0 < H < \frac{1}{2} $时, $ M_t^H(\alpha, \beta) $的独立平稳增量是负相关的;

(ⅵ) $ M_t^H(\alpha, \beta) $的独立平稳增量具有长程关联性,当且仅当$ H > \frac{1}{2} $;

(ⅶ)对任意的$ t\in \mathbb{R}^+ $, $ M_t^H(\alpha, \beta) $满足

Cheridito[8]已经证明,当Hurst参数$ H\in (0, \frac{3}{4}] $时, $ M_t^H(\alpha, \beta) $不是半鞅,而当$ H\in (\frac{3}{4}, 1) $$ \beta\neq 0 $时, $ M_t^H(\alpha, \beta) $是一个半鞅且等价于布朗运动. Bender[10]等人证明了混合分数布朗运动市场在正则策略集中是不存在套利的,并且欧式期权均存在这样一个正则策略集将其进行套期保值,因此,市场在此策略集下是完全的.所以本文恒假设Hurst参数$ H\in (\frac{3}{4}, 1) $,并且假设市场是无摩擦的,所交易的期权只能在到期日才能被执行.

在完备概率空间$ \{\Omega, \mathfrak{F}, \mathfrak{F}_t, P\} $中考虑一个连续时间的金融市场,其中$ \{\mathfrak{F}_t\}_{0\leq t\leq T} $是基于布朗运动$ B_t $、分数布朗运动$ B_t^H $、Poisson过程$ P_t $生成的自然$ \sigma $ -代数流, $ P_t $是定义在空间$ (\mathfrak{F}_t, P) $上的Poisson跳过程,跳跃强度为$ \lambda $,并且$ B_t $, $ B_t^H $, $ P_t $是相互独立的随机过程. $ j_t $为复合Poisson过程表示为$ j_t = \sum\limits_{i = 0}^{N_t}P_i $,记在Merton假设下,有$ \ln(1+j_t)\sim\mathbb{N}[\ln(1+\mu_{j_t})-\frac{1}{2}\sigma_{j_t}^2, \sigma_{j_t}^2] $, $ \mu_{j_t} = E(P_i) = \exp\{\ln(1+j_t)-1\} $, $ \sigma_{j_t}^2 = Var\ln(1+j_t) $,显然$ \mu_{j_t} $是关于$ j_t $的无条件期望,是可以计算的一个常数, $ j_t $是一个关于时间$ t $的有界函数,记$ \ln(1+\mu_{j_t}) = \sigma_3 $是一个常数.

引理2.1[15]   设$ V_t = V(S_t, t) $, $ V $是二元可微函数.若动态价格过程$ S_t $适合方程

$ \begin{equation} \mathrm{d}S_t = \mu S_t\mathrm{d}t+\sigma_1 S_t\mathrm{d}B_t^H +\sigma_2 S_t \mathrm{d}B_t+\sigma_3 S_t \mathrm{d}P_t, \end{equation} $

其中$ \mu $是期望收益率,则

其中$ \sigma_3 S_t \frac{\partial V}{\partial S}\mathrm{d}P_t $表示Poisson跳过程$ \mathrm{d}t $时间内作用于$ \frac{\partial V}{\partial S} $的变化量, $ \lambda\mathbb{E}[V(S(1+j_t), t)-V(S, t)]\mathrm{d}t $为Poisson跳跃过程在$ \mathrm{d}t $时间内作用于$ V $的变化量, $ \mathbb{E} $表示二元可微函数$ V $的期望算子.

回望期权是一种典型复杂的新型奇异期权,期权持有者在期权到期日可通过选择资产价格在有效回望期内的最高价格或者最低价格而进行交易.设$ T $为回望周期$ [0, T] $的终止时间,风险资产的价格$ S_t $$ t(0\leq t\leq T) $时刻取得的最大值和最小值分别表示为$ M_0^T = \max\limits_{0\leq\eta\leq T}S_\eta $$ m_0^T = \min\limits_{0\leq\eta\leq T}S_\eta, $固定履约回望期权是指提前约定敲定价格$ K $,固定履约看涨或看跌实际支付额分别为$ M_0^T-K, K-m_0^T $.

$ V(S, J, t) $表示回望期权在任意$ t(0\leq t\leq T) $时刻的价格($ J $是路径依赖变量),且满足如下抛物型随机偏微分方程[15]

$ \begin{eqnarray} 0& = &\frac{\partial V}{\partial t}+\bigg( H\sigma_1^2t^{2H-1} +\dfrac{1}{2}\sigma_2^2+\dfrac{1}{2}\lambda\sigma_3^2\bigg)S^2\dfrac{\partial^2 V}{\partial S^2}+(r-q-\lambda\sigma_3)S\dfrac{\partial V}{\partial S} -(r+\lambda)V \\&&+\left\{ \begin{aligned} &\lambda\mathbb{E}[V(S(1+j_t), \min\{J, S(1+j_t)\}, t)], \mbox{回望看涨}, \\ &\lambda\mathbb{E}[V(S(1+j_t), \max\{J, S(1+j_t)\}, t)], \mbox{回望看跌}, \end{aligned}\right. \end{eqnarray} $

其中$ 0\leq t\leq T $,并且$ V(S, J, t) $在如下区域连续可微

$ \begin{equation} \Sigma = \left\{ \begin{aligned} & \{(S, J):0<J\leq S<\infty\}, \mbox{回望看涨}, \\ &\{(S, J):0<S\leq J<\infty\}, \mbox{回望看跌}, \end{aligned} \right. \end{equation} $

终端条件为

$ \begin{equation} \frac{\partial V}{\partial J}\Big|_{S = J} = 0. \end{equation} $

注意到抛物型随机偏微分方程(2.2)的结构复杂,寻找回望期权的精确解析解是比较困难的[25],其解的结构相当复杂.于是,考虑在混合跳扩散B-S模型下研究回望期权的近似解,不妨设原生资产价格$ S_t $满足如下随机微分方程

$ \begin{eqnarray} \mathrm{d}S_t& = &[\mu(t, S_t)-q-\lambda\sigma_3(t, S_t;\varepsilon_3)] S_t\mathrm{d}t \\&&+\sigma_1(t, S_t;\varepsilon_1) S_t\mathrm{d}B_t^H +\sigma_2(t, S_t;\varepsilon_2) S_t \mathrm{d}B_t+\sigma_3(t, S_t;\varepsilon_3) S_t \mathrm{d}P_t, \end{eqnarray} $

无风险资产价格$ B_t $满足

其中$ S_0 $为原生资产的初始价格, $ \mu(t, S_t) $表示风险资产的期望收益率, $ \varepsilon_i(0 < \varepsilon_i < 1, i = 1, 2, 3) $表示风险资产波动率的摄动参数, $ \mu(t, S_t) $$ \sigma_i(t, S_t; \varepsilon_i)(0 < \varepsilon_i < 1, i = 1, 2, 3) $为时间$ t $和股票价格$ S_t $的一般函数, $ q $是股息分红率,且$ B_t^H $, $ B_t $, $ P_t $是相互独立的,作为原生资产的股票是连续支付股息红利的.如果用常数$ r $表示无风险资产的利率, $ \mathscr{P}(K, m, t) $表示欧式固定履约回望看跌期权的价格,用$ \mathscr{C}(K, M, t) $表示欧式固定履约回望看涨期权的价格,则由文献[25]可知$ \mathscr{P}(K, m, t) $$ \mathscr{C}(K, M, t) $为如下两个随机偏微分方程初值问题的解

$ \begin{array}{l} \left\{ \begin{aligned}&\mathfrak{L}\mathscr{P} = 0, \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; (t, S)\in(0, T)\times\mathbb{R}^+, \\ &\mathscr{P}(K, m, t) = (K-m_0^T)^+, (t, m)\in[0, T]\times\mathbb{R}^+, \end{aligned} \right. \end{array} $

$ \begin{array}{l} \left\{ \begin{aligned} &\mathfrak{L}\mathscr{C} = 0, \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; (t, S)\in(0, T)\times\mathbb{R}^+, \\ &\mathscr{C}(K, M, t) = (M_0^T-K)^+, (t, M)\in[0, T]\times\mathbb{R}^+, \end{aligned} \right. \end{array} $

其中$ \mathfrak{L} $为混合分数跳扩散B-S算子,定义为

3 多尺度参数摄动方法

定义如下符号

$ \begin{eqnarray} \mathfrak{L}_0V& = &\partial_tV+\bigg[Ht^{2H-1}f(0, 0) +\dfrac{1}{2}g(0, 0)+\dfrac{1}{2}\lambda h(0, 0)\bigg](\partial_{xx}V-\partial_xV)+ \\&&+(r-q-\lambda\sqrt{h(0, 0)})(\partial_xV-V) -(r+\lambda)V \\&&+ \left\{ \begin{aligned} &\lambda\mathbb{E}[V(S(1+j_t), \min\{J, S(1+j_t)\}, t)], \mbox{回望看涨}, \\ &\lambda\mathbb{E}[V(S(1+j_t), \max\{J, S(1+j_t)\}, t)], \mbox{回望看跌}. \end{aligned}\right. \end{eqnarray} $

$ \begin{eqnarray} \mathfrak{L}_{(\varepsilon_1, \varepsilon_2, \varepsilon_3)}V & = &\partial_tV+\bigg[Ht^{2H-1}f(t, x, \varepsilon_1) +\dfrac{1}{2}g(t, x, \varepsilon_2)+\dfrac{1}{2}\lambda h(t, x, \varepsilon_3)\bigg](\partial_{xx}V-\partial_xV) \\&&+(r-q-\lambda\sqrt{h(t, x, \varepsilon_3)})(\partial_xV-V) -(r+\lambda)V \\&&+ \left\{ \begin{aligned} &\lambda\mathbb{E}[V(S(1+j_t), \min\{J, S(1+j_t)\}, t)], \mbox{回望看涨}, \\ &\lambda\mathbb{E}[V(S(1+j_t), \max\{J, S(1+j_t)\}, t)], \mbox{回望看跌}. \end{aligned}\right. \end{eqnarray} $

其中

$ \begin{equation} \begin{split} \left. \begin{aligned} &f(t, x, \varepsilon_1) = \sigma_1^2(t, x, \varepsilon_1), g(t, x, \varepsilon_2) = \sigma_2^2(t, x, \varepsilon_2), h(t, x, \varepsilon_3) = \sigma_3^2(t, x, \varepsilon_3), \\&x = \ln\bigg[S\prod\limits_{\mathbb{i} = 1}^n(1+j_{t_\mathbb{i}})\bigg].\end{aligned} \right\} \end{split} \end{equation} $

在如上变换下,当$ \varepsilon_i(0 < \varepsilon_i < 1, i = 1, 2, 3) = 0 $时, $ f(t, x, \varepsilon_1), g(t, x, \varepsilon_2), h(t, x, \varepsilon_3) $均为与$ t $$ x $无关的常数,即$ f(t, x, 0) = f_0(0, 0), g(t, x, 0) = g_0(0, 0), h(t, x, 0) = h_0(0, 0) $,并且$ f(t, x, \varepsilon_1), g(t, x, \varepsilon_2), h(t, x, \varepsilon_3) $可以根据泰勒公式在$ \varepsilon_i(0 < \varepsilon_i < 1, i = 1, 2, 3) = 0 $附近展成如下形式的幂级数

$ \begin{eqnarray} \left\{ \begin{aligned}&f(t, x, \varepsilon_1) = f_0(0, 0)+\varepsilon_1f_1(t, x)+\cdots+\frac{\varepsilon_1^n}{n!}f_n(t, x)+\cdots;\\ &g(t, x, \varepsilon_2) = g_0(0, 0)+\varepsilon_2g_1(t, x)+\cdots+\frac{\varepsilon_2^n}{n!}g_n(t, x)+\cdots;\\ &h(t, x, \varepsilon_3) = h_0(0, 0)+\varepsilon_3h_1(t, x)+\cdots+\frac{\varepsilon_3^n}{n!}h_n(t, x)+\cdots, \end{aligned} \right. \end{eqnarray} $

其中$ f_n(t, x), g_n(t, x), h_n(t, x) $分别表示$ f(t, x, \varepsilon_1), g(t, x, \varepsilon_2), h(t, x, \varepsilon_3) $$ \varepsilon_i $$ (0 < \varepsilon_i < 1, $$ i = 1, 2, 3) $$ n $阶导数在$ \varepsilon_i $$ (0 < \varepsilon_i < 1, i = 1, 2, 3) = 0 $处的值.由于$ f(t, x, \varepsilon_1) = \sigma_1^2(t, x, \varepsilon_1) > 0, $$ g(t, x, \varepsilon_2) = \sigma_2^2(t, x, \varepsilon_2) > 0, h(t, x, \varepsilon_3) = \sigma_3^2(t, x, \varepsilon_3) > 0, $于是这里恒假设

下面对随机偏微分方程初值问题(2.6)采用多尺度参数摄动方法作处理来解决欧式固定履约价的回望期权定价问题.令$ \mathscr{P}(K, m, t) = V(m, x, t) $,则初值问题(2.6)转化为

$ \begin{equation} \left\{ \begin{array}{ll} \mathfrak{L}V = 0, &(t, m, x)\in(0, T)\times\mathbb{R}^+\times\mathbb{R}^+, \\ V(m, x, t) = (K-m_0^T)^+, & (t, m, x)\in[0, T]\times\mathbb{R}^+\times\mathbb{R}^+, \end{array} \right. \end{equation} $

根据多尺度参数摄动方法的思想[16-19],把$ V(m, x, t) $$ \varepsilon_i(0 < \varepsilon_i < 1, i = 1, 2, 3) = 0 $附近展开成幂级数

$ \begin{eqnarray} V(m, x, t)& = &V_{0, 0, 0}(m, x, t)+\varepsilon_1V_{1, 0, 0}(m, x, t)+\varepsilon_2V_{0, 1, 0}(m, x, t) +\varepsilon_3V_{0, 0, 1}(m, x, t)+\cdots \\&&+\varepsilon_1^i\varepsilon_2^j\varepsilon_3^kV_{i, j, k}(m, x, t)+\cdots. \end{eqnarray} $

把上述级数(3.6)代入到随机偏微分方程初值问题(3.5),可得

其中$ {\Bbb E} $为二元可微函数$ V $的期望算子,比较$ \varepsilon_1, \varepsilon_2, \varepsilon_3 $的同次幂系数,可得

$ x $$ t $的任意性,令$ \varepsilon_1, \varepsilon_2, \varepsilon_3 $的相同次幂项的系数为零,从而可得

其中

注意到初值问题(3.5)的初值条件复杂,不妨根据幂级数展式(3.6)对初值问题(3.5)的初值条件进行分解,把抛物型混合跳扩散随机偏微分方程(3.5)的求解问题化归为一组可求解的常系数抛物型混合跳扩散随机偏微分方程的初值问题,其中$ V_{0, 0, 0}(m, x, t) $为如下抛物型混合跳扩散随机偏微分方程初值问题的解

$ \begin{equation} \left\{ \begin{aligned}&\mathfrak{L}_0V_{0, 0, 0} = 0, \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \ (t, m, x)\in(0, T)\times\mathbb{R}^+\times\mathbb{R}^+, \\ &V_{0, 0, 0}(m, x, T) = (K-m_0^T)^+, (t, m, x)\in[0, T]\times\mathbb{R}^+\times\mathbb{R}^+, \end{aligned} \right. \end{equation} $

$ V_{i, j, k}(m, x, t) $为如下抛物型混合跳扩散随机偏微分方程初值问题的解

$ \begin{equation} \left\{ \begin{aligned}&\mathfrak{L}_0V_{i, j, k}+\mathscr{U}_{i, j, k}(m, x, t) = 0, (t, m, x)\in(0, T)\times\mathbb{R}^+\times\mathbb{R}^+, \\ &V_{i, j, k}(m, x, T) = 0, \; \; \; \; \; \; \; \; \; \; \; \; \; (t, m, x)\in[0, T]\times\mathbb{R}^+\times\mathbb{R}^+. \end{aligned} \right. \end{equation} $

下面依次计算$ V_{i, j, k} $,其中$ i = 0, 1, 2, \cdots; j = 0, 1, 2, \cdots; k = 0, 1, 2, \cdots $.

4 定价公式的推导

引理4.1  若$ V_{0, 0, 0}(m, x, t) $为抛物型混合跳扩散随机偏微分方程初值问题(3.7)的解,则有

其中

$ K $为固定履约敲定价格, $ {\Bbb N}(\cdot) $为累积正态分布函数.

证明详见文献[25].

引理4.2  线性抛物型混合跳扩散随机偏微分方程(3.8)的解可表示为

其中

这里$ {\cal E}_n $表示$ \prod\limits_{i = 1}^n (1+j_{t_i}) $的期望算子,且

  由回望期权的定义,在有效回望期内的任意时刻的价格$ m $是已知的,于是在计算$ V_{i, j, k}(m, x, t) $时, $ {\mathscr U}_{i, j, k}(m, x, t) $是已知的,因此将$ m $视为常数,并作变换

$ \begin{eqnarray} u_{i, j, k}(x, t) = \exp\{-{\bf a}x-{\bf b}(T-t)\}V_{i, j, k}(m, x, s), s = T-t, \end{eqnarray} $

则抛物型混合跳扩散随机偏微分方程初值问题(3.8)可以转换为如下形式

$ \begin{equation} \left\{ \begin{array}{ll} \partial_su_n-\bigg[Ht^{2H-1}f(0, 0) +\frac{1}{2}g(0, 0)+\frac{1}{2}\lambda h(0, 0)\bigg]\partial_{xx}u_n-[r-q-\lambda\sqrt{h(0, 0)}]\partial_xu_n\\ +(r+\lambda)u_n -\lambda{\Bbb E}[u_n(\cdot)] = \widetilde{{\mathscr U}}_{i, j, k}(m, x, t), \; \; \; \; (s, x)\in(0, T)\times\mathbb{R} ^+, \\ u_n(0, x) = 0, \hskip 5.8cm x\in \mathbb{R} ^+. \end{array} \right. \end{equation} $

由于$ {\mathscr U}_{i, j, k}(m, x, t) $是解析的,且$ \widetilde{{\mathscr U}}_{i, j, k}(m, x, s) = \exp\{-{\bf a}x-{\bf b}s\}{\mathscr U}_{i, j, k}(m, x, T-s) $,根据文献[16-19],抛物型混合跳扩散随机偏微分方程初值问题(4.2)的解可用如下Volterra积分表示

$ \begin{eqnarray} u_{i, j, k}(x, t) = \int_{-\infty}^{+\infty}\int_t^T \widetilde{{\mathscr U}}_{i, j, k}(m, x, T-s)G_0(\xi, x, s){\rm d}s{\rm d}\xi, \end{eqnarray} $

对变换(4.1)进行逆变换可完成引理的证明.

由引理4.1,引理4.2以及公式(3.5)和(3.6),易得如下结论成立.

定理4.1  设$ {\mathscr P}(K, m, t) $表示欧式固定履约回望看跌期权的价格,则有

$ \begin{eqnarray} {\mathscr P}(K, m, t) & = &{\mathscr P}_{0, 0, 0}(K, m, t)+\varepsilon_1{\mathscr P}_{1, 0, 0}(K, m, t)+\varepsilon_2{\mathscr P}_{0, 1, 0}(K, m, t) +\varepsilon_3{\mathscr P}_{0, 0, 1}(K, m, t)+\cdots \\&&+\varepsilon_1^i\varepsilon_2^j\varepsilon_3^k{\mathscr P}_{i, j, k}(K, m, t)+\cdots, \end{eqnarray} $

其中

这里$ d_1, d_2, d_1^r $见引理4.1.

同理可证明欧式固定履约回望看涨期权的定价公式,以如下定理给出.

定理4.2  设$ {\mathscr C}(K, M, t) $表示欧式固定履约回望看涨期权的价格,则有

$ \begin{eqnarray} {\mathscr C}(K, M, t) & = &{\mathscr C}_{0, 0, 0}(K, M, t)+\varepsilon_1{\mathscr C}_{1, 0, 0}(K, M, t)+\varepsilon_2{\mathscr C}_{0, 1, 0}(K, M, t) +\varepsilon_3{\mathscr C}_{0, 0, 1}(K, M, t)+\cdots \\&&+\varepsilon_1^i\varepsilon_2^j\varepsilon_3^k{\mathscr C}_{i, j, k}(K, M, t)+\cdots, \end{eqnarray} $

其中

这里$ d_1, d_2, d_1^r $见引理4.1.

5 误差估计

本节内容讨论近似结论(4.4), (4.5)的误差估计问题.先作如下假设

(ⅰ)假设$ \sqrt{f(t, x;\varepsilon_1)} $, $ \sqrt{g(t, x;\varepsilon_2)} $, $ \sqrt{h(t, x;\varepsilon_3)} $均在$ [0, T]\times\mathbb{R}^+ $上满足关于$ x $的一致Lipschtiz条件:存在正常数$ \mathcal {M}_1 $, $ \mathcal {M}_2 $, $ \mathcal {M}_3 $,对任意的$ t\in[0, T] $以及$ x, y\in\mathbb{R}^+ $,有

(ⅱ)假设$ f_n(t, x) $, $ g_n(t, x) $, $ h_n(t, x) $均在$ [0, T]\times\mathbb{R}^+ $上一致有界,即对任意的$ (t, x)\in[0, T]\times\mathbb{R}^+ $,对任意的正整数$ n $,存在正常数$ \mathfrak{M}_1 $, $ \mathfrak{M}_2 $, $ \mathfrak{M}_3 $,使得

$ \begin{equation} \left|f_n(t, x)\right|\leq\mathfrak{M}_1, \left|g_n(t, x)\right|\leq \mathfrak{M}_2, \left|h_n(t, x)\right|\leq \mathfrak{M}_3. \end{equation} $

(ⅲ)假设对任意的$ (t, x)\in[0, T]\times\mathbb{R}^+ $,有

很显然如上假设中$ f(t, x;\varepsilon_1) $, $ g(t, x;\varepsilon_2) $, $ h(t, x;\varepsilon_3) $以及$ \sqrt{f(t, x;\varepsilon_1)} $, $ \sqrt{g(t, x;\varepsilon_2)} $, $ \sqrt{h(t, x;\varepsilon_3)} $均在$ (t, x)\in[0, T]\times\mathbb{R}^+ $上关于$ x $满足线性增长条件.由公式(3.4)和公式(5.1)可得

为了方便证明,令$ \partial_{xx}V_{i, j, k}-\partial_xV_{i, j, k} = \mathscr{V}_{i, j, k}(S, x, t) $,下面给出两个关于$ \mathscr{V}_{i, j, k}(S, x, t) $的必要引理.

引理5.1  对任意的$ (S, x, t)\in\mathbb{R}^+\times\mathbb{R}^+\times[0, T] $,存在不依赖$ S, x, t $的正常数$ \mathscr{M}_1, \mathscr{M}_2 $,使得

$ \begin{equation} \left. \begin{aligned}& |\mathscr{V}_{0, 0, 0}(S, x, t)|\leq \dfrac{\mathscr{M}_1}{\sqrt{2f_0(0, 0)(T^{2H}-t^{2H}) +g_0(0, 0)(T-t)+\lambda h_0(0, 0)(T-t)}}, \\&|V_{0, 0, 0}(S, x, t)|\leq\mathscr{M}_2. \end{aligned} \right\} \end{equation} $

  由引理4.1容易得到

$ \begin{equation} \partial_xd_1 = \partial_xd_2 = -\bigg[2f_0(0, 0)(T^{2H}-t^{2H}) +g_0(0, 0)(T-t)+\lambda h_0(0, 0)(T-t)\bigg]^{-\frac{1}{2}}, \end{equation} $

以及

$ \begin{eqnarray} \partial_xV_{0, 0, 0} & = &\exp\{-r(T-t)\}K\mathbb{N}'(-d_2)-\exp\{[-q-\lambda\sqrt{h_0(0, 0)}](T-t)\} S \mathbb{N}'(-d_1)\\ &&+\frac{r}{2[-q-\lambda\sqrt{h_0(0, 0)}]} \exp\{[-q-\lambda\sqrt{h_0(0, 0)}](T-t)\}\mathbb{N}'(d_1), \end{eqnarray} $

$ \begin{equation} \partial_{xx}V_{0, 0, 0} = \bigg[2f_0(0, 0)(T^{2H}-t^{2H}) +g_0(0, 0)(T-t)+\lambda h_0(0, 0)(T-t)\bigg]^{-\frac{1}{2}}-\partial_xV_{0, 0, 0}, \end{equation} $

将公式(5.4)和(5.5)代入$ \mathscr{V}_{0, 0, 0}(S, x, t) $,对任意的$ \epsilon > 0 $,有

于是$ \mathscr{V}_{0, 0, 0}(S, x, t) $$ \mathbb{R}^+\times\mathbb{R}^+\times[0, T] $上有界,即存在正常数$ \mathscr{M}_0 $,使得

$ \mathscr{M}_1 = \mathscr{M}_0\bigg[2f_0(0, 0)(T^{2H}-t^{2H}) +g_0(0, 0)(T-t)+\lambda h_0(0, 0)(T-t)\bigg]^{-\frac{1}{2}} $,则公式(5.2)中第一个不等式成立.下证公式(5.2)中第二个不等式.

根据引理4.2,抛物型混合跳扩散随机偏微分方程初值问题(3.7)的解$ V_{0, 0, 0}(m, x, t) $存在Green函数$ G(x, y, t) $,使得

$ \begin{equation} V_{0, 0, 0}(x, t) = \exp\{-r(T-t)\}\int_{-\infty}^{+\infty}[K-m]^+G(x, y, t) \mathrm{d}y, \end{equation} $

由文献[16],存在正常数$ \mathscr{M}_3, \mathscr{M}_4 $,使得

$ \begin{eqnarray} |G(x, y, t)|&\leq&\frac{\mathscr{M}_3}{\sqrt{2f_0(0, 0)(T^{2H}-t^{2H}) +g_0(0, 0)(T-t)+\lambda h_0(0, 0)(T-t)}}\\&&\cdot\exp\bigg\{\frac{-\mathscr{M}_4(x-y)^2} {2f_0(0, 0)(T^{2H}-t^{2H}) +g_0(0, 0)(T-t)+\lambda h_0(0, 0)(T-t)}\bigg\}. \end{eqnarray} $

将公式(5.7)代入公式(5.6)可得

于是式(5.2)中第二个不等式成立.

引理5.2  对任意的$ (S, x, t)\in\mathbb{R}^+\times\mathbb{R}^+\times[0, T] $和任意的非负整数$ i, j, k $,存在不依赖$ S, x, t $的正常数$ \mathscr{M}_1^*, \mathscr{M}_2^* $,使得

证明类似引理5.1,结合基本假设(ⅱ)的公式(5.1)可得.

注意到公式(3.2)是初值问题(3.7)的抛物算子,于是可以考虑利用抛物方程的Feyman-Kac公式来研究$ V(S, x, t) $的近似解以及近似解的误差估计.

由以上的辅助引理,给出本节的两个主要结论.

定理5.1  对于充分小的$ T $,存在不依赖$ x, t $$ S $的正常数$ \mathscr{M} $,对任意的$ \epsilon_1 > 0 $,有

  令$ \mathcal {V}_{0, 0, 0}(x, m, t) = V_{0, 0, 0}(x, m, t)-V(x, m, t) $,由引理5.1可知$ \mathcal {V}_{0, 0, 0}(x, m, T) = 0 $,于是

$ \begin{eqnarray} &&\mathfrak{L}_{\varepsilon_1, \varepsilon_2, \varepsilon_3}\mathcal {V}_{0, 0, 0}(x, t) \\& = &\partial_t\mathcal {V}_{0, 0, 0} +\bigg\{\bigg[Ht^{2H-1}f_0(0, 0)+\dfrac{1}{2}g_0(0, 0)+\dfrac{1}{2}\lambda h_0(0, 0)\bigg] (\partial_{xx}V_{0, 0, 0}-\partial_xV_{0, 0, 0})\\&& +[r-q-\lambda\sqrt{h_0(0, 0)}](\partial_xV_{0, 0, 0}-V_{0, 0, 0}) \bigg\}-(r+\lambda)V_{0, 0, 0} +\lambda\mathbb{E}[V_{0, 0, 0}(\cdot)] \\ & = &\bigg\{Ht^{2H-1}[f(t, x;\varepsilon_1)-f_0(0, 0)]+\dfrac{1}{2} [g(t, x;\varepsilon_2)-g_0(0, 0)]+\dfrac{1}{2}\lambda[h(t, x;\varepsilon_3)-h_0(0, 0)]\bigg\} \\&&\cdot(\partial_{xx}V_{0, 0, 0}-\partial_xV_{0, 0, 0}) +[r-q-\lambda\sqrt{h_0(0, 0)}](\partial_xV_{0, 0, 0}-V_{0, 0, 0})-(r+\lambda)V_{0, 0, 0} \\&&+\lambda\mathbb{E}[V_{0, 0, 0}(\cdot)] \\& = &\bigg\{Ht^{2H-1}[f(t, x;\varepsilon_1)-f_0(0, 0)]+\dfrac{1}{2} [g(t, x;\varepsilon_2)-g_0(0, 0)]+\dfrac{1}{2}\lambda[h(t, x;\varepsilon_3)-h_0(0, 0)]\bigg\} \\&&\cdot\mathscr{V}_{0, 0, 0}(t, x) +[r-q-\lambda\sqrt{h_0(0, 0)}]\partial_xV_{0, 0, 0}+\mathfrak{L}_0V_{0, 0, 0}-(r+\lambda)V_{0, 0, 0} +\lambda\mathbb{E}[V_{0, 0, 0}(\cdot)] \\& = &\bigg\{Ht^{2H-1}[f(t, x;\varepsilon_1)-f_0(0, 0)]+\dfrac{1}{2} [g(t, x;\varepsilon_2)-g_0(0, 0)]+\dfrac{1}{2}\lambda[h(t, x;\varepsilon_3)-h_0(0, 0)]\bigg\} \\&&\cdot\mathscr{V}_{0, 0, 0}(t, x) +[r-q-\lambda\sqrt{h_0(0, 0)}]\partial_xV_{0, 0, 0}-(r+\lambda)V_{0, 0, 0} +\lambda\mathbb{E}[V_{0, 0, 0}(\cdot)]. \end{eqnarray} $

因此, $ \mathcal {V}_{0, 0, 0}(x, t) $为如下抛物型混合跳扩散随机偏微分方程初值问题的解

$ \begin{equation} \left\{ \begin{aligned}&\mathfrak{L}_{\varepsilon_1, \varepsilon_2, \varepsilon_3} \mathcal {V}_{0, 0, 0}(x, t) = \mathscr{H}_{0, 0, 0}(x, t), \; (t, x)\in(0, T)\times\mathbb{R}^+, \\ &\mathcal{V}_{0, 0, 0}(x, T) = 0, \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \ x\in\mathbb{R}^+\times\mathbb{R}^+, \end{aligned} \right. \end{equation} $

其中

$ \begin{eqnarray} \mathscr{H}_{0, 0, 0}(x, t) & = &\bigg\{Ht^{2H-1}[f(t, x;\varepsilon_1)-f_0(0, 0)]+\dfrac{1}{2} [g(t, x;\varepsilon_2)-g_0(0, 0)]\\ &&+\dfrac{1}{2}\lambda[h(t, x;\varepsilon_3) -h_0(0, 0)]\bigg\} \mathscr{V}_{0, 0, 0}(t, x)\\ &&+[r-q-\lambda\sqrt{h_0(0, 0)}]\partial_xV_{0, 0, 0}-(r+\lambda)V_{0, 0, 0} +\lambda\mathbb{E}[V_{0, 0, 0}(\cdot)]. \end{eqnarray} $

$ \begin{equation} \left\{ \begin{aligned}&\partial_t\mathcal {V}_{0, 0, 0}+\bigg[Ht^{2H-1}f(t, x;\varepsilon_1) +\dfrac{1}{2}g(t, x;\varepsilon_2)+\dfrac{1}{2}\lambda h(t, x;\varepsilon_3)\bigg]\partial_{xx} \mathcal {V}_{0, 0, 0}\\ &+[r-q-\lambda\sqrt{h(t, x;\varepsilon_3)}]\partial_x\mathcal{V}_{0, 0, 0} -(r+\lambda)V_{0, 0, 0} +\lambda\mathbb{E}[V_{0, 0, 0}(\cdot)]\\ & = \mathscr{H}_{0, 0, 0}(x, t), (t, x)\in(0, T)\times\mathbb{R}^+, \\ &\mathcal{V}_{0, 0, 0}(x, T) = 0, \; \; \; \; (t, x)\in[0, T]\times\mathbb{R}^+, \end{aligned} \right. \end{equation} $

由引理5.1,引理5.2以及公式(5.1),对任意的$ \mathscr{E}_1 > 0 $, $ \mathscr{E}_2 > 0 $, $ \mathscr{E}_3 > 0 $, $ (t, x)\in[0, T]\times\mathbb{R}^+ $,有

$ \begin{equation} \left. \begin{aligned} &\left|f(t, x;\varepsilon_1)-f_0(0, 0)\right|\leq\mathfrak{M}_1\mathscr{E}_1, \\& \left|g(t, x;\varepsilon_2)-g_0(0, 0)\right|\leq\mathfrak{M}_2\mathscr{E}_2, \\& \left|h(t, x;\varepsilon_3)-h_0(0, 0)\right|\leq\mathfrak{M}_3\mathscr{E}_3.\end{aligned} \right\} \end{equation} $

把公式(5.2)和公式(5.12)代入公式(5.11),对任意的$ (t, x)\in[0, T]\times\mathbb{R}^+ $可得

$ \begin{eqnarray} |\mathscr{H}_{0, 0, 0}(t, x)|&\leq&\bigg(\mathfrak{M}_1\mathscr{E}_1 +\frac{1}{2}\mathfrak{M}_2\mathscr{E}_2+\frac{1}{2}\mathfrak{M}_3\mathscr{E}_3\bigg) \\&&\cdot \dfrac{\mathscr{M}_1}{\sqrt{2f_0(0, 0)(T^{2H}-t^{2H}) +g_0(0, 0)(T-t)+\lambda h_0(0, 0)(T-t)}} +\mathscr{M}_2. \end{eqnarray} $

不妨对抛物初值问题(5.11)的解$ \mathcal {V}_{0, 0, 0}(x, t) $使用Feynman-Kac公式作处理,则$ \mathcal {V}_{0, 0, 0}(x, t) $可表示为如下形式的条件概率

$ \begin{equation} \mathcal {V}_{0, 0, 0}(t, x) = E\bigg[\int_t^T\exp\bigg\{-r(T-t)\bigg\} \mathscr{H}_{0, 0, 0}(\tau, S_\tau)\mathrm{d}\tau\bigg|\mathfrak{F}_t\bigg], \end{equation} $

其中$ S_t $为混合跳扩散随机微分方程

$ \begin{equation} \mathrm{d}S_t = \mu S_t\mathrm{d}t+\sqrt{f(t, S_t;\varepsilon_1)} S_t\mathrm{d}B_t^H +\sqrt{g(t, S_t;\varepsilon_2)} S_t \mathrm{d}B_t+\sqrt{h(t, S_t;\varepsilon_3)} S_t \mathrm{d}P_t \end{equation} $

的解,由于随机微分方程(5.15)存在解$ \mathcal {V}_{0, 0, 0}(t, x) $,把公式(5.13)代入公式(5.14)可得$ \mathcal {V}_{0, 0, 0}(t, x) $的估计式

$ \begin{eqnarray} |\mathcal {V}_{0, 0, 0}(t, x)|&\leq& E\bigg[\int_t^T| \mathscr{H}_{0, 0, 0}(\tau, S_\tau)|\mathrm{d}\tau\bigg|\mathfrak{F}_t\bigg] \\&\leq&\bigg(\mathfrak{M}_1\mathscr{E}_1 +\frac{1}{2}\mathfrak{M}_2\mathscr{E}_2+\frac{1}{2}\mathfrak{M}_3\mathscr{E}_3\bigg) \\&&\cdot \int_0^T\dfrac{\mathscr{M}_1}{\sqrt{2f_0(0, 0)(T^{2H}-\tau^{2H}) +g_0(0, 0)(T-\tau)+\lambda h_0(0, 0)(T-\tau)}}\mathrm{d}\tau\\ &&+\mathscr{M}_2, \end{eqnarray} $

显然瑕积分$ \int_0^T\frac{1}{\sqrt{2f_0(0, 0)(T^{2H}-\tau^{2H}) +g_0(0, 0)(T-\tau)+\lambda h_0(0, 0)(T-\tau)}}\mathrm{d}\tau $是收敛的,定理得证.

定理5.2  对于充分小的$ T $,使得$ \sum\limits_{i = 0}^n\sum\limits_{j = 0}^n\sum\limits_{k = 0}^n\varepsilon_1^i\varepsilon_2^j\varepsilon_3^k\mathscr{P}(S, m, t) $$ \mathbb{R}^+\times\mathbb{R}^+\times[0, T] $上一致收敛到$ \mathscr{P}(S, m, t) $,即对任意的正整数$ n $以及$ \epsilon > 0 $,存在不依赖$ x, t $的正常数$ \mathscr{M}^* $,使得

  仿照定理5.1的证明,考察

其中

注意到$ \mathcal {V}_{i, j, k}(x, m, t) $满足初值条件$ \mathcal {V}_n(x, m, T) = 0 $,又因为

所以有$ \mathfrak{L}_{\varepsilon_1, \varepsilon_2, \varepsilon_3}\mathcal {V}_{i, j, k}(x, m, t) = \mathscr{H}_{i, j, k}(x, m, t) $,其中

$ \begin{eqnarray} \mathscr{H}_{i, j, k}(x, m, t) & = &\bigg\{Ht^{2H-1}\bigg[f(t, x;\varepsilon_1)- \sum\limits_{l = 0}^{n-1}\frac{\varepsilon_1^l}{l!}f_l(t, x)\bigg]+\dfrac{1}{2} \bigg[g(t, x;\varepsilon_2)- \sum\limits_{l = 0}^{n-1}\frac{\varepsilon_2^l}{l!}g_l(t, x)\bigg] \\ &&+\dfrac{1}{2}\lambda\bigg[h(t, x;\varepsilon_3)- \sum\limits_{l = 0}^{n-1}\frac{\varepsilon_3^l}{l!}h_l(t, x)\bigg]\bigg\} \cdot \sum\limits_{i = 0}^{n-1}\varepsilon_1^i\sum\limits_{j = 0}^{n-1}\varepsilon_2^j \sum\limits_{k = 0}^{n-1}\varepsilon_3^k\mathscr{V}_{i, j, k}(x, m, t) \\&& +\left[r-q-\lambda\sqrt{h(t, x;\varepsilon_3)- \sum\limits_{l = 0}^{n-1}\frac{\varepsilon_3^l}{l!}h_l(t, x)}\ \right ] \\&& \cdot\sum\limits_{i = 0}^{n-1}\varepsilon_1^i\sum\limits_{j = 0}^{n-1}\varepsilon_2^j \sum\limits_{k = 0}^{n-1}\varepsilon_3^k\mathscr{V}_{i, j, k}(x, m, t) -(r+\lambda)V_{i, j, k} +\lambda\mathbb{E}[V_{i, j, k}(\cdot)]. \end{eqnarray} $

于是$ \mathcal {V}_n(x, t) $为如下抛物型混合跳扩散随机偏微分方程初值问题的解

$ \begin{equation} \left\{ \begin{aligned}&\mathfrak{L}_{\varepsilon_1, \varepsilon_2, \varepsilon_3} \mathcal {V}_{i, j, k}(x, t) = \mathscr{H}_{i, j, k}(x, t), \; (t, x)\in(0, T)\times\mathbb{R}^+, \\ &\mathcal{V}_{i, j, k}(x, T) = 0, \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; x\in\mathbb{R}^+\times\mathbb{R}^+, \end{aligned} \right. \end{equation} $

为了估计$ \mathscr{H}_{i, j, k}(x, t) $,利用公式(5.1),把基本假设(ⅲ)代入公式(5.17)可得

$ \begin{eqnarray} |\mathscr{H}_{i, j, k}(x, m, t)| &\leq&\bigg\{Ht^{2H-1}\frac{\mathfrak{M}_1}{(n-l+1)!}\varepsilon_1^{n-l+1}+\dfrac{1}{2} \frac{\mathfrak{M}_2}{(n-l+1)!}\varepsilon_2^{n-l+1} \\ &&+\dfrac{1}{2}\lambda\frac{\mathfrak{M}_3}{(n-l+1)!}\varepsilon_3^{n-l+1}\bigg\} \cdot\sum\limits_{i = 0}^{n-1}\varepsilon_1^i\sum\limits_{j = 0}^{n-1}\varepsilon_2^j \sum\limits_{k = 0}^{n-1}\varepsilon_3^k|\mathscr{V}_{i, j, k}(x, m, t)| \\ &&+\left[r-q-\lambda\sqrt{\frac{\mathfrak{M}_3}{(n-l+1)!}\varepsilon_3^{n-l+1}}\right ]\cdot\sum\limits_{i = 0}^{n-1}\varepsilon_1^i\sum\limits_{j = 0}^{n-1}\varepsilon_2^j \sum\limits_{k = 0}^{n-1}\varepsilon_3^k|\mathscr{V}_{i, j, k}(x, m, t)| \\ &&-|(r+\lambda)V_{i, j, k}| +|\lambda\mathbb{E}[V_{i, j, k}(\cdot)]|. \end{eqnarray} $

进一步将引理5.1的公式(5.2)以及引理5.2的结果代入到公式(5.19),对任意的$ \epsilon^* > 0 $,可得

$ \begin{eqnarray} |\mathscr{H}_{i, j, k}(x, m, t)| &\leq&\bigg\{Ht^{2H-1}\frac{\mathfrak{M}_1}{(n-l+1)!}\varepsilon_1^{n-l+1}+\dfrac{1}{2} \frac{\mathfrak{M}_2}{(n-l+1)!}\varepsilon_2^{n-l+1} \\&&+\dfrac{1}{2}\lambda\frac{\mathfrak{M}_3}{(n-l+1)!}\varepsilon_3^{n-l+1}\bigg\} \cdot\sum\limits_{i = 0}^{n-1}\varepsilon_1^i\sum\limits_{j = 0}^{n-1}\varepsilon_2^j \sum\limits_{k = 0}^{n-1}\varepsilon_3^k\mathscr{M}_1^* \\&&+\left[r-q-\lambda\sqrt{\frac{\mathfrak{M}_3}{(n-l+1)!}\varepsilon_3^{n-l+1}}\right ]\cdot\sum\limits_{i = 0}^{n-1}\varepsilon_1^i\sum\limits_{j = 0}^{n-1}\varepsilon_2^j \sum\limits_{k = 0}^{n-1}\varepsilon_3^k\mathscr{M}_1^* \\&&-(r+\lambda)\mathscr{M}_2^* +\lambda\mathbb{E}[\mathscr{M}_2^*]<\epsilon^*. \end{eqnarray} $

由Feynman-Kac公式可知,抛物型混合随机初值问题(5.18)的解可表示为如下形式的条件概率问题

$ \begin{equation} \mathcal {V}_{i, j, k}(t, x) = E\bigg[\int_t^T\exp\bigg\{-r(T-t)\bigg\} \mathscr{H}_{i, j, k}(\tau, S_\tau)\mathrm{d}\tau\bigg|\mathfrak{F}_t\bigg], \end{equation} $

其中$ S_t $满足混合跳扩散随机微分方程(5.15).将估计式(5.20)代入公式(5.21),对任意的$ \epsilon > 0 $,可得$ \mathcal {V}_{i, j, k} $的估计式

证毕.

6 数值模拟

本节内容对上节给出的误差估计结果进行数值模拟分析.根据混合分数跳扩散Black-Scholes公式,当波动率$ \varepsilon_i(0 < \varepsilon_i < 1, i = 1, 2, 3) $为常数时,欧式固定履约价的回望期权是有精确解的,给定$ \sigma_1 = 0.1, \sigma_2 = 0.02, \sigma_3 = 0.0007 $,设定小参数$ \varepsilon_i(0 < \varepsilon_i < 1, i = 1, 2, 3) $使得$ \sigma_i(0 < \sigma_i < 1, i = 1, 2, 3) = \varepsilon_i+\sigma_i(0) $,根据定理1从$ \sigma_i(0) $开始依次模拟欧式固定履约价的回望看跌期权价格,然后与$ \sigma_1 = 0.1, \sigma_2 = 0.02, \sigma_3 = 0.0007 $时的期权价格的精确结果作比对.取无风险利率$ r = 0.025 $,提前约定的固定敲定价格$ K = 100 $, $ \lambda = 2.68, q = 0.01, H = 0.76 $, $ T = 1 $(年),则$ \mathscr{P}_i $的Matlab结果如下.

上述模拟中$ \mathscr{P}_n $表示为

观察表 1表 2可以看出随着阶数$ i, j, k $的增大,期权价格的近似解逐步逼近期权价格的精确解.对比图 1也可以看出当$ \varepsilon_1 = 0.01, \varepsilon_2 = 0.001, \varepsilon_3 = 0.0001 $时需要计算到$ \mathscr{P}_5 $才有较好的近似结果,这充分说明当小参数$ \varepsilon_i(0 < \varepsilon_i < 1, i = 1, 2, 3) $越小时期权价格逼近精确解的速度越快,这与定理1所得误差估计结论相符.

表 1   欧式固定履约价的回望看跌期权价格$(\varepsilon_1=0.01, \varepsilon_2=0.001, \varepsilon_3=0.0001)$

股价$S$${\mathscr P}_0$${\mathscr P}_1$${\mathscr P}_2$${\mathscr P}_3$${\mathscr P}_4$${\mathscr P}_5$精确值
1071.41997852373.63615646876.51989675181.14574897984.91204750188.65835142187.5310
2063.26058602465.22357618967.77786287371.87523351175.21125035878.52955689077.5310
3055.10119351256.81099591359.03582898962.60471803265.51045321368.40076236167.5310
4046.94180109248.39841562150.29379511153.33420256555.80965606558.27196782357.5310
5038.78240851139.98583534341.55176123144.06368708846.10885892248.14317328947.5310
6030.62301600131.57325506532.80972735334.79317162136.40806177138.01437876437.5310
7022.46443944323.16151603124.06856767625.52358323226.70823473427.88659711727.5320
8014.36844544214.81430150015.39445940116.32509963117.08281275117.83650330717.6097
907.0572217647.2762089387.5611599438.0182542428.3904134688.7605969678.6492

新窗口打开| 下载CSV


表 2   欧式固定履约价的回望看跌期权价格$(\varepsilon_1=0.02, \varepsilon_2=0.002, \varepsilon_3=0.0002)$

股价$S$$ {\mathscr P}_0$${\mathscr P}_1$${\mathscr P}_2$${\mathscr P}_3$${\mathscr P}_4$${\mathscr P}_5$精确值
1067.38687005571.01836615176.23825212283.30946797286.15063901189.72881616187.5310
2059.68824098962.90485595567.52839478473.79175786776.30833868679.47772608277.5310
3051.98961192154.79134575358.81853746464.27404787466.46603836369.22663605667.5310
4044.29098286246.67783554450.10868014154.75633774356.62373803858.97554603357.5310
5036.59235383738.56432534341.39882282245.23862768246.78143773748.72445600447.5310
6028.89372474730.45081514132.68896556535.72091762636.93913737338.47336597837.5310
7021.19586554422.33811629123.97997917126.20415933327.09782127228.22330106027.5320
8013.55705482114.28764806215.33779744716.76040188117.33199561118.05186200217.6097
906.6586982497.0175372447.5333297928.2320577848.5128024018.8663727858.6492

新窗口打开| 下载CSV


图 1

图 1   欧式固定履约价的回望看跌期权价格近似


参考文献

Elliott J , Hoek J .

A general fractional white noise theory and applications to finance

Mathematical Finance, 2003, 13 (2): 301- 330

DOI:10.1111/1467-9965.00018      [本文引用: 1]

Hu Y Z , Øsendal B .

Fractional White noise calculus and applications to finance, infinite dimensional analysis

Quantum Probability and Related Topics, 2003, 6 (1): 1- 32

DOI:10.1142/S0219025703001110     

Mishura Y . Stochastic Calculus Fractional Brownian Motions and Related Processes. Berlin: Springer, 2008

[本文引用: 1]

Tomas B , Henrik H .

A note on Wick products and the fractional Black-Scholes model

Finance and Stochastics, 2005, 9 (2): 197- 209

DOI:10.1007/s00780-004-0144-5      [本文引用: 1]

Xiao W L , Zhang W G , Zhang X L , Zhang X .

Pricing model for equity warrants in a mixed fractional Brownian environment and its algorithm

Physica A, 2012, 391 (24): 6418- 6431

DOI:10.1016/j.physa.2012.07.041      [本文引用: 1]

Sun L .

Pricing currency options in the mixed fractional Brownian motion

Physica A, 2013, 392 (16): 3441- 3458

DOI:10.1016/j.physa.2013.03.055      [本文引用: 1]

He X J , Chen W T .

The pricing of credit default swaps under a generalized mixed fractional Brownian motion

Physica A, 2014, 404 (36): 26- 33

URL     [本文引用: 1]

Cheridito P .

Mixed fractional Brownian motion

Bernoulli, 2001, 7 (6): 913- 934

DOI:10.2307/3318626      [本文引用: 3]

Zili M. On the mixed fractional Brownian motion. Journal of Applied Mathematics and Stochastic Analysis, 2006, 1-9: Art ID: 32435

[本文引用: 2]

Bender C , Sottinen T , Valkeila E .

Pricing by hedging and no-arbitrage beyond semimartingales

Finance and Stochastics, 2008, 12 (4): 441- 468

DOI:10.1007/s00780-008-0074-8      [本文引用: 2]

Foad S , Adem K .

Pricing currency option in a mixed fractional Brownian motion with jumps environment

Mathematical Problems in Engineering, 2014, 1 (1): 1- 13

URL     [本文引用: 1]

Foad S , Adem K .

Actuarial approach in a mixed fractional Brownian motion with jumps environment for pricing currency option

Advances in Difference Equations, 2015, 257 (1): 1- 8

[本文引用: 1]

Rao B L S P .

Option pricing for processes driven by mixed fractional Brownian motion with superimposed jumps

Probability in the Engineering and Informational Sciences, 2015, 29 (4): 589- 596

DOI:10.1017/S0269964815000200      [本文引用: 1]

Miao J , Yang X .

Pricing model for convertible bonds:A mixed fractional Brownian motion with jumps

East Asian Journal on Applied Mathematics, 2015, 5 (3): 222- 237

DOI:10.4208/eajam.221214.240415a      [本文引用: 1]

Yang Z Q .

Optimal exercise boundary of American fractional lookback option in a mixed jump-diffusion fractional Brownian motion environment

Mathematical Problems in Engineering, 2017, 3 (1): 1- 17

URL     [本文引用: 3]

张伟江. 奇异摄动导论. 北京: 科学出版社, 2014

[本文引用: 4]

Zhang W J . Introduction to Singular Perturbation. Beijing: Science Press, 2014

[本文引用: 4]

Nesterov A V , Shuliko O V .

Asymptotics of the solution to a singularly perturbed system of parabolic equations in the critical case

Computational Mathematics and Mathematical Physics, 2010, 50 (2): 256- 263

DOI:10.1134/S0965542510020077      [本文引用: 1]

Ma Y S , Li Y .

A uniform asymptotic expansion for stochastic volatility model in pricing multi-asset European options

Applied Stochastic Models in Business and Industry, 2012, 28 (4): 324- 341

DOI:10.1002/asmb.880      [本文引用: 1]

Butuzov V F , Bychkov A I .

Asymptotics of the solution of an initial-boundary value problem for a singularly perturbed parabolic equation in the case of double root of the degenerate equation

Computational Mathematics and Mathematical Physics, 2013, 49 (10): 1261- 1273

URL     [本文引用: 3]

Lai T L , Lim T W .

Exercise regions and efficient valuation of American lookback options

Mathematical Finance, 2004, 14 (2): 249- 269

DOI:10.1111/j.0960-1627.2004.00191.x      [本文引用: 1]

Eberlein E , Papapantoleon A .

Equivalence of floating and fixed strike Asian and lookback options

Stochastic Processes and their Applications, 2005, 115 (1): 31- 40

DOI:10.1016/j.spa.2004.07.003      [本文引用: 1]

Leung K S .

An analytic pricing formula for lookback options under stochastic volatility

Applied Mathematics Letters, 2013, 26 (1): 145- 149

DOI:10.1016/j.aml.2012.07.008      [本文引用: 1]

Park S H , Kim J H .

An semi-analytic pricing formula for lookback options under a general stochastic volatility model

Statistics and Probability Letters, 2013, 83 (11): 2537- 2543

DOI:10.1016/j.spl.2013.08.002      [本文引用: 1]

Fuh C D , Luo S F , Yen J F .

Pricing discrete path-dependent options under a double exponential jump-diffusion model

Journal of Banking and Finance, 2013, 37 (8): 2702- 2713

DOI:10.1016/j.jbankfin.2013.03.023      [本文引用: 1]

杨朝强.

一类特殊混合跳-扩散模型的欧式回望期权定价

华东师范大学学报(自然科学版), 2017, 194 (4): 1- 17

DOI:10.3969/j.issn.1000-5641.2017.04.001      [本文引用: 4]

Yang Z Q .

Pricing European lookback option by a special kind of mixed jump-diffusion model

Journal of East China Normal University (Natural Science), 2017, 194 (4): 1- 17

DOI:10.3969/j.issn.1000-5641.2017.04.001      [本文引用: 4]

杨朝强.

混合跳-扩散模型下一类基金公司的金融债券定价与违约概率研究

系统工程, 2018, 36 (2): 16- 28

DOI:10.3969/j.issn.1001-2362.2018.02.007      [本文引用: 1]

Yang Z Q .

Pricing of fund corporate bonds and default probability study under mixed jump-diffusion model

Systems Engineering, 2018, 36 (2): 16- 28

DOI:10.3969/j.issn.1001-2362.2018.02.007      [本文引用: 1]

/