一类混合型分数阶半线性积分-微分方程解的存在性
Existence of Mild Solutions for a Class of Fractional Semilinear Integro-Differential Equation of Mixed Type
Received: 2018-08-29
Fund supported: |
|
该文利用非紧性测度、β-预解族、k-集压缩原理研究了一类混合型分数阶半线性积分-微分方程温和解的存在性.众所周知,利用k-集压缩原理证明解的存在性时需要单独给出附加条件来保证压缩系数小于1,而该文不需要单独附加保证压缩系数小于1的条件.在更一般的条件下证明了方程解的存在性.文章最后给出了一个例子说明该文主要结果的应用.
关键词:
In this paper, the authors studied the existence results of the mild solutions for a class of fractional semilinear integro-differential equation of mixed type by using the measure of noncompactness, k-set contraction and β-resolvent family. It is well known that the k-set contraction requires additional condition to ensure the contraction coefficient 0 < k < 1. We don't require additional condition to ensure the contraction coefficient 0 < k < 1. An example is introduced to illustrate the main results of this paper.
Keywords:
本文引用格式
.
Zhu Bo, Han Baoyan, Liu Lishan.
1 引言
然而,根据我们的了解,混合型分数阶积分-微分方程温和解的存在性还没有人研究.本文,我们研究如下的混合型分数阶积分-微分方程
这里,
这里
如果
2 预备知识和引理
用
成立,我们称
引理2.1[13]
若存在一个实数
成立,则
引理2.3[22] 如果函数
引理2.4[23] 设常数
则对固定的常数
定义2.2 如果
则
3 主要结论
定义算子
定理3.1 假设下列条件成立.
(H
(H
(H
(H
(H
那么问题(1.1)-(1.2)在
证 由(3.1)式,对所有的
根据(H
定理3.2 假设下列条件成立.
(H
这里
(H
(H
那么问题(1.1)-(1.2)在
证 根据(H
记集合
根据(3.3)式,我们有
因此,
下面证明
由于算子
由引理2.2可知,
下面,我们证明对任意的
由条件(H
这里,
由(3.7)式和(3.8)式得
这里
则对所有的
因而,对任意正整数
根据(3.5)式,对任意正整数
由引理2.4可得
这里
4 应用
考虑如下的混合型分数阶偏微分方程
这里
显然算子
记
则方程(4.1)变为(1.1)-(1.2)的形式.如果满足定理3.1和3.2的假设条件,则问题(4.1)存在一个温和解.
参考文献
Implicit Euler approximation of stochastic evolution equations with fractional Brownian motion
DOI:10.1016/j.cnsns.2016.07.023 [本文引用: 1]
Stability of noninstantaneous impulsive evolution equations
The Dirichlet problem for the fractional
Approximate controllability of semilinear evolution equations of fractional order with nonlocal and impulsive conditions via an approximating technique
Local and global existence of mild solutions for a class of semilinear fractional integro-differential equations
On the orbital Hausdorff dependence of differential equations with non-instantaneous impulses
Existence and uniqueness of global mild solutions for a class of nonlinear fractional reaction-diffusion equations with delay
DOI:10.1016/j.camwa.2016.01.028 [本文引用: 3]
The spectral analysis for a singular fractional differential equation with a signed measure
Local and global existence of mild solutions for a class of nonlinear fractional reaction-diffusion equations with delay
DOI:10.1016/j.aml.2016.05.010 [本文引用: 3]
Approximate controllability of a multi-valued fractional impulsive stochastic partial integro-differential equation with infinite delay
Controllability of fractional integro-differential evolution equations with nonlocal conditions
Existence theorems of global solutions of initial value problems for nonlinear integro-differential equations of mixed type in banach spaces and applications
DOI:10.1016/S0898-1221(04)90002-8 [本文引用: 3]
Existence theorems of global solutions for nonlinear Volterra type integral equations in Banach spaces
DOI:10.1016/j.jmaa.2004.10.069 [本文引用: 5]
The existence and uniqueness of mild solutions for fractional differential equations with nonlocal conditions of order
DOI:10.1016/j.camwa.2012.04.006 [本文引用: 2]
Local and global existence of mild solutions for impulsive fractional semi-linear integro-differential equation
DOI:10.1016/j.cnsns.2010.12.043 [本文引用: 1]
Local and global existence of mild solution to impulsive fractional semilinear integro-differential equation with noncompact semigroup
DOI:10.1016/j.cnsns.2016.05.021 [本文引用: 1]
Existence of mild solutions for fractional nonautonomous evolution equations of Sobolev type with delay
DOI:10.1186/s13660-017-1526-5 [本文引用: 3]
Almost automorphic mild solutions to fractional differential equations
DOI:10.1016/j.na.2007.10.004 [本文引用: 1]
Controllability of Fractional Evolution Nonlocal Impulsive Quasilinear Delay Integro-Differential Systems
DOI:10.1016/j.camwa.2011.03.075 [本文引用: 1]
Iterative method for solutions and coupled quasi-solutions of nonlinear Fredholm integral equations in ordered Banach spaces
On well-posedness of an initial value problem for nonlinear second-order impulsive integro-differential equations of Volterra type in Banach spaces
DOI:10.1016/j.jmaa.2005.12.032 [本文引用: 1]
/
〈 | 〉 |