1 |
Kamrani M Jamshidi N Implicit Euler approximation of stochastic evolution equations with fractional Brownian motion Commun Nonlinear Sci Numer Simulat 2017, 44: 1- 10
doi: 10.1016/j.cnsns.2016.07.023
|
2 |
Wang J R Stability of noninstantaneous impulsive evolution equations Appl Math Lett 2017, 73: 157- 162
doi: 10.1016/j.aml.2017.04.010
|
3 |
Vázquez J The Dirichlet problem for the fractional $p$-Laplacian evolution equation J Diff Equ 2016, 260: 6038- 6056
doi: 10.1016/j.jde.2015.12.033
|
4 |
Ge F Zhou H Kou C Approximate controllability of semilinear evolution equations of fractional order with nonlocal and impulsive conditions via an approximating technique Appl Math Comput 2016, 275: 107- 120
|
5 |
Zhu B Liu L S Wu Y H Local and global existence of mild solutions for a class of semilinear fractional integro-differential equations Fract Calcu Appl Anal 2017, 20: 1338- 1355
|
6 |
Yang D Wang J R O'Regan D On the orbital Hausdorff dependence of differential equations with non-instantaneous impulses CR Math 2018, 356 (2): 150- 171
|
7 |
Zhu B Liu L S Wu Y H Existence and uniqueness of global mild solutions for a class of nonlinear fractional reaction-diffusion equations with delay Comput Math Appl 2019, 78: 1811- 1818
doi: 10.1016/j.camwa.2016.01.028
|
8 |
Zhang X G Liu L S Wu Y H Wiwatanapataphee B The spectral analysis for a singular fractional differential equation with a signed measure Aplied Math Comput 2015, 257: 252- 263
doi: 10.1016/j.amc.2014.12.068
|
9 |
Zhu B Liu L S Wu Y H Local and global existence of mild solutions for a class of nonlinear fractional reaction-diffusion equations with delay Appl Math Lett 2016, 61: 73- 79
doi: 10.1016/j.aml.2016.05.010
|
10 |
Yan Z M Lu F X Approximate controllability of a multi-valued fractional impulsive stochastic partial integro-differential equation with infinite delay Appl Math Comput 2017, 292: 425- 447
|
11 |
Liang J Yang H Controllability of fractional integro-differential evolution equations with nonlocal conditions Appl Math Comput 2015, 254: 20- 29
|
12 |
Liu L S Wu C X Guo F Existence theorems of global solutions of initial value problems for nonlinear integro-differential equations of mixed type in banach spaces and applications Comput Math Appl 2004, 47: 13- 22
doi: 10.1016/S0898-1221(04)90002-8
|
13 |
Liu L S Guo F Wu C X Wu Y H Existence theorems of global solutions for nonlinear Volterra type integral equations in Banach spaces J Math Anal Appl 2005, 309: 638- 649
doi: 10.1016/j.jmaa.2004.10.069
|
14 |
Shu X B Wang Q Q The existence and uniqueness of mild solutions for fractional differential equations with nonlocal conditions of order $1 < \alpha < 2$ Comput Math Appl 2012, 64: 2100- 2109
doi: 10.1016/j.camwa.2012.04.006
|
15 |
Rashid M Al-Omari A Local and global existence of mild solutions for impulsive fractional semi-linear integro-differential equation Commun Nonlinear Sci Numer Simul 2011, 16: 3493- 3503
doi: 10.1016/j.cnsns.2010.12.043
|
16 |
Gou H D Li B L Local and global existence of mild solution to impulsive fractional semilinear integro-differential equation with noncompact semigroup Commun Nonlinear Sci Numer Simulat 2017, 42: 204- 214
doi: 10.1016/j.cnsns.2016.05.021
|
17 |
Gou H D Li B L Existence of mild solutions for fractional nonautonomous evolution equations of Sobolev type with delay J Inequ Appl 2017, 2017: 252
doi: 10.1186/s13660-017-1526-5
|
18 |
Araya D Lizama C Almost automorphic mild solutions to fractional differential equations Nonlinear Anal 2008, 69: 3692- 3705
doi: 10.1016/j.na.2007.10.004
|
19 |
Debbouche A Baleanu D Controllability of Fractional Evolution Nonlocal Impulsive Quasilinear Delay Integro-Differential Systems Comput Math Appl 2011, 62: 1442- 1450
doi: 10.1016/j.camwa.2011.03.075
|
20 |
Pazy A. Semigroup of Linear Operators and Applications to Partial Differential Equations. New York: Springer-Verlag, 1983
|
21 |
Guo D J, Lakshmikantham V, Liu X Z. Nonlinear Integral Equations in Abstract Spaces. Dordrecht: Kluwer Academic, 1996
|
22 |
Liu L S Iterative method for solutions and coupled quasi-solutions of nonlinear Fredholm integral equations in ordered Banach spaces Indian J Pure Appl Math 1996, 27: 959- 972
|
23 |
Liu L S Wu Y H Zhang X G On well-posedness of an initial value problem for nonlinear second-order impulsive integro-differential equations of Volterra type in Banach spaces J Math Anal Appl 2006, 317: 634- 649
doi: 10.1016/j.jmaa.2005.12.032
|