数学物理学报, 2019, 39(5): 1055-1063 doi:

论文

上下解反向的脉冲微分包含解的存在性

罗艳,, 谢文哲

Existence of Solutions for Impulsive Differential Inclusions with Upper and Lower Solutions in the Reverse Order

Luo Yan,, Xie Wenzhe

通讯作者: 罗艳, E-mail: luoyan2527@126.com

收稿日期: 2018-07-20  

基金资助: 湖南科技大学教学改革研究项目.  907-G31714

Received: 2018-07-20  

Fund supported: the Teaching Reform Research Project of Hunan University of Science and Technology.  907-G31714

摘要

该文讨论一阶脉冲微分包含非线性边界问题解的存在性.当下解α和上解β反向βα,通过使用Martelli不动点定理结合上下解方法建立存在性结果.同时,文中指出如果给出不同的上下解反向定义,也可以得到存在性结果.

关键词: 脉冲微分包含 ; 非线性边界条件 ; 不动点定理 ; 上下解反向

Abstract

In this paper, we discuss the existence of solutions for nonlinear boundary problem of first-order impulsive differential inclusions. In the presence of a lower solution α and an upper solution β in the reverse order βα, we establish the existence results by using Martelli's fixed point theorem with upper and lower solutions method. We find that if we give different definitions of lower and upper solutions in the reverse order, we can also get the existence results.

Keywords: Impulsive differential inclusions ; Nonlinear boundary conditions ; Fixed point theorem ; Lower and upper solutions in the reverse order

PDF (298KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

罗艳, 谢文哲. 上下解反向的脉冲微分包含解的存在性. 数学物理学报[J], 2019, 39(5): 1055-1063 doi:

Luo Yan, Xie Wenzhe. Existence of Solutions for Impulsive Differential Inclusions with Upper and Lower Solutions in the Reverse Order. Acta Mathematica Scientia[J], 2019, 39(5): 1055-1063 doi:

1 引言

本文研究如下一阶脉冲微分包含非线性边界问题

$ \begin{equation} \left\{ \begin{array}{ll} x'(t)\in F(t, x(t)), \quad & t\in J', \\ \Delta x(t_{k}) = I_{k}(x(t_{k})), & k = 1, \cdots , m, \\ g(x(0), x(T)) = 0, \end{array} \right. \end{equation} $

其中$ J' = J\backslash\{t_{1}, \cdots , t_{m}\} $, $ J = [0, T], \ T>0 $, $ 0<t_{1}<t_{2}<\cdots<t_{m}< T $, $ \Delta x(t_{k}) = x(t_{k}^{+})-x(t_{k}^{-}) $, $ x(t_{k}^{+}) = \lim\limits_{\varepsilon\rightarrow0^{+}}x(t_{k}+\varepsilon) $, $ x(t_{k}^{-}) = \lim\limits_{\varepsilon\rightarrow0^{+}}x(t_{k}-\varepsilon) $, $ F:J\times {\mathbb R}\rightarrow P({\mathbb R}) $是一个多值映射, $ P({\mathbb R}) $$ {\mathbb R} $的所有非空子集组成的集合, $ I_{k}\in C({\mathbb R}, {\Bbb R} )\ (k = 1, \cdots , m) $, $ g:{\Bbb R} ^{2}\rightarrow {\Bbb R} $是一个单值映射.

脉冲微分包含理论在生物和社会宏观系统、信息科学、控制系统、通讯、生命科学等领域中都有重要的应用.对于一个实际应用较强的系统来说,研究脉冲微分包含解的存在性是研究系统其它性质的首要基础.讨论脉冲微分包含解的存在性常见的方法有不动点理论,参见文献[7-8, 12],还有其他方法,参见文献[1, 3, 5].在文献[4]中,作者仅讨论了周期边界条件$ x(0) = x(T) $的一阶脉冲微分包含,即$ g(x, y) = x-y = 0 $.对于反周期边界条件$ x(0) = -x(T) $的一阶脉冲微分包含,即$ g(x, y) = x+y = 0 $,文献[4]中的结论不能应用.

受上述工作的启发,我们讨论问题(1.1)解的存在性,其主要方法是Martelli不动点定理结合上下解反向方法.本文结构如下:第二节给出本文应用的定义和引理.第三节我们证明系统(1.1)解的存在性结果,最后第四节我们给出一些推论.

2 预备知识

下面我们引进一些记号,定义以及一些引理.

$ X $是一个Banach空间, $ Z $$ X $的子集.记$ P(X) = \{Z\subset X\mid Z\neq\emptyset\} $, $ P_{cv}(X) = \{Z\subset P(X)\mid Z\ \mbox{是凸的} \} $, $ P_{cp}(X) = \{Z\subset P(X)\mid Z\ \mbox{是紧的}\} $, $ P_{cv, cp}(X) = P_{cv}(X)\cap P_{cp}(X) $,以此类推.例如,设$ X = {\mathbb R} $,我们有记号$ P({\Bbb R} ) $, $ P_{cv}({\Bbb R} ) $, $ P_{cp}({\Bbb R} ) $$ P_{cv, cp}({\Bbb R} ) $.

$ PC(J, {\Bbb R} ) = \{x:J\rightarrow {\mathbb R}| x(t)\ \mbox{除}\ t_{k}\mbox{外处处连续}, \mbox{其中}\ x(t_{k}^{-}), \ x(t_{k}^{+})\ \mbox{存在且} \ x(t_{k}^{-}) = x(t_{k}), \ k = 1, \cdots , m \} $,其范数为$ \|x\|_{PC} = \sup\{|x(t)|: t\in J\ \} $,则$ PC(J, {\Bbb R} ) $是一个Banach空间. $ L^{1}(J, {\Bbb R} ) = \{x:J\rightarrow {\mathbb R}|\ |x|:J\rightarrow[0, +\infty)\rm\ \mbox{勒贝格可积} \} $,其范数为$ \|x\|_{L^{1}} = \int_{0}^{T} |x(t)|{\rm d}t $,则$ L^{1}(J, {\Bbb R} ) $是一个Banach空间. $ AC(J, {\Bbb R} ) $是所有绝对连续函数$ x:J\rightarrow {\mathbb R} $组成的空间.

定义2.1  多值映射$ F:J\times {\mathbb R}\rightarrow P({\Bbb R} ) $称为$ L^{1} $-Carathéodory,如果: (ⅰ)对每个$ x\in{\mathbb R} $, $ t\rightarrow F(t, x) $是可测的; (ⅱ)几乎对所有的$ t\in J $, $ x\rightarrow F(t, x) $是上半连续的; (ⅲ)对每个$ \rho>0 $,存在$ \varphi_{\rho}\in L^{1}(J, [0, +\infty)) $满足

定义2.2  函数$ \alpha, \ \beta\in PC(J, {\Bbb R} )\cap AC(J', {\Bbb R} ) $称为问题(1.1)的反向上下解,如果$ \beta(t)\leq\alpha(t) $, $ t\in J $,且存在$ v_{1}, \ v_{2}\in L^{1}(J, {\Bbb R} ) $满足

定义2.3  $ x\in PC(J, {\Bbb R} )\cap AC(J', {\Bbb R} ) $称为系统(1.1)的解,如果存在$ v\in L^{1}(J, {\Bbb R} ) $满足$ v(t)\in F(t, x(t)) $, $ \rm{a.e.} $$ t\in J $, $ x'(t) = v(t) $, $ \rm{a.e.} $$ t\in J' $, $ \Delta x(t_{k}) = I_{k}(x(t_{k})) $, $ k = 1, \cdots , m $,且$ g(x(0), x(T)) = 0 $.

引理2.1[10]  设$ X $是Banach空间, $ F:J\times X\rightarrow P_{cv, cp}(X) $$ L^{1} $-Carathéodory多值映射, $ S_{F, x} = \{f\in L^{1}(J, X)| \ f(t)\in F(t, x(t)), {\rm a.e.}\ t\in J\}\neq\emptyset $, $ \Gamma:L^{1}(J, X)\rightarrow C(J, X) $是线性连续映射,那么映射$ \Gamma\circ S_{F}:C(J, X)\rightarrow P_{cv, cp}(C(J, X)), \ u\mapsto (\Gamma\circ S_{F})(x): = \Gamma( S_{F, x}) $$ C(J, X)\times C(J, X) $中是闭图.

引理2.2 (Martelli不动点定理[11])  设$ X $是Banach空间, $ G:X\rightarrow P_{cv, cp}(X) $是上半连续的凝聚映射.如果集合$ \Re = \{x\in X:\mbox {对某些}\ \lambda>1, \ \lambda x\in G(x)\} $有界,则$ G $有不动点.

注2.1  (ⅰ)如果多值映射$ F $是全连续的,并且是非空紧值的,则$ F $是上半连续的当且仅当$ F $有闭图(i.e., $ x_{n}\rightarrow x^{\ast}, \ y_{n}\rightarrow y^{\ast}, \ y_{n}\in F(x_{n}) $可推出$ y^{\ast}\in F(x^{\ast})) $; (ⅱ)如果多值映射$ F $是全连续的,则$ F $是凝聚的.可参见文献[9].

$ J_{0} = [0, t_{1}] $, $ J_{k} = (t_{k}, t_{k+1}] $, $ k = 1, \cdots , m $, $ t_{m+1} = T $.

定义2.4[2]  函数族$ S $称为拟等度连续,如果对每个$ \varepsilon>0 $存在$ \delta>0 $满足:如果$ x\in S $, $ k = 0, 1, \cdots , m $,则$ \|x(t_{1})-x(t_{2})\|<\varepsilon, \ \forall\ t_{1}, \ t_{2}\in J_{k}, \ |t_{1}-t_{2}|<\delta. $

引理2.3 (紧性标准[2])  集合$ S\in PC(J, R^{n}) $是相对紧的当且仅当(ⅰ) $ S $有界, i.e.,对每个$ x\in S $和某些$ c>0 $, $ \|x\|<c $; (ⅱ) $ S $拟等度连续的.

定义2.5  设$ X $是Banach空间,多值映射$ F $称为全连续的,如果对每个有界子集$ U\subseteq X $, $ F(U) $是相对紧的.

3 主要结果

下面我们给出本文的主要结果以及证明.

定理3.1  假设下列条件成立.

(H1) $ F:J\times {\Bbb R} \rightarrow P_{cv, cp}({\Bbb R} ) $$ L^{1} $-Carathéodory多值映射.

(H2) $ \alpha, \beta\in PC(J, {\Bbb R} )\cap AC(J', {\Bbb R} ) $满足定义2.2.

(H3) $ I_{k}\in C({\Bbb R} , {\Bbb R} ) $, $ k = 1, \cdots , m $.

(H4)当$ (x, y)\in[\beta(0), \alpha(0)]\times[\beta(T), \alpha(T)] $, $ g(x, y) $是连续的单值映射,且关于$ y $非增.

则系统(1.1)至少有一个解$ x $,且满足$ \beta(t)\leq x(t)\leq \alpha(t) $, $ t\in J $.

  我们把系统(1.1)转换成不动点问题.考虑如下问题

$ \begin{equation} \left\{ \begin{array}{ll} x'(t)+x(t)\in F_{1}(t, x(t)), \ \ t\in J', \\ \Delta x(t_{k}) = I_{k}(\tau(t_{k}, x(t_{k}))), \ k = 1, \cdots , m, \\ x(0) = \tau(0, x(0)-g(\tau(0, x), \tau(T, x))), \end{array} \right. \end{equation} $

其中$ F_{1}(t, x) = F(t, \tau(t, x))+\tau(t, x) $, $ \tau:\ C(J, {\Bbb R} )\rightarrow C(J, {\Bbb R} ) $的定义如下

显然,如果$ x $是问题(3.1)的解,且$ \beta(t)\leq x(t)\leq \alpha(t) $, $ \beta(0)\leq x(0)-g(\tau(0, x), \tau(T, x))\leq \alpha(0) $,则$ x $是系统(1.1)的解.通过直接计算,我们知道问题(3.1)的解是下列算子$ N:PC(J, {\Bbb R} )\rightarrow P(PC(J, {\Bbb R} )) $的不动点,

其中

注意到对每个$ x\in C(J, {\Bbb R} ) $, $ S_{F, x} $非空(见文献[10]),所以$ \widetilde{S}_{F, x} $非空.

下面我们将应用引理2.2证明$ N $有不动点,其证明过程分成5步.

第1步  对每个$ x\in PC(J, {\Bbb R} ) $, $ N(x) $是凸的.

的确,如果$ h_{1}, \ h_{2}\in N(x) $,则存在$ \overline{v}_{1}, \ \overline{v}_{2}\in \widetilde{S}_{F, x} $使得

$ 0\leq l\leq1 $,则对每个$ t\in J $,我们有

由于$ \widetilde{S}_{F, x} $是凸的(因为在(H1)中$ F $有凸值),则$ l h_{1}+(1-l)h_{2}\in N(x) $,所以$ N(x) $是凸的.

第2步  $ N $是全连续的.

首先,我们将证明$ N $映有界集到$ PC(J, {\Bbb R} ) $中的有界集.设$ q $是正数, $ B_{q} = \{x\in PC(J, {\Bbb R} ): \|x\|_{PC}<q\} $是有界集,且$ x\in B_{q} $.则对每个$ h\in N(x) $,存在$ v\in \widetilde{S}_{F, x} $满足

$ \begin{equation} h(t) = x(0)+ \int^{t}_{0}[v(s)+\tau(s, x)-x(s)]{\rm d}s+ \sum\limits_{0<t_{k}<t}I_{k}(\tau(t_{k}, x(t_{k}))). \end{equation} $

注意到问题(3.1)的边界条件和$ \tau $的定义,我们有

$ \begin{equation} \beta(0)\leq x(0)\leq\alpha(0), \end{equation} $

$ \begin{equation} \beta(t)\leq \tau(t, x)\leq\alpha(t). \end{equation} $

$ \rho_{1} = \max(q, \ \sup\limits_{t\in J}|\alpha(t)|, \ \sup\limits_{t\in J}|\beta(t)|) $,则有$ |\tau(t, x)|\leq\rho_{1} $.由条件(H1)可知,存在$ \varphi_{\rho_{1}}\in L^{1}(J, [0, +\infty)) $满足

$ \begin{equation} \sup\{|v|: v\in F(t, \tau(t, x))\}\leq\varphi_{\rho_{1}}(t). \end{equation} $

如果$ x\in B_{q} $,由$ I_{k} $的连续性和(3.4)式知,存在$ c_{k}>0 $, $ k = 1, \cdots , m $满足$ |I_{k}(\tau(t_{k}, x(t_{k})))|\leq c_{k} $.所以,由(3.3)和(3.5)式,我们有

于是$ \|N(x)\|_{PC}\leq K $.

其次,我们将证明$ N $映有界集到$ PC(J, {\Bbb R} ) $中的拟等度连续集.设$ u_{1}, u_{2}\in J_{k} $, $ k = 0, 1, $$ \cdots , m $, $ u_{1}<u_{2} $, $ x\in B_{q} $, $ h\in N(x) $.则有

$ u_{2}\rightarrow u_{1} $,上面不等式的右端趋于0,由定义2.4知$ N(B_{q}) $是拟等度连续的.再由引理2.3和定义2.5, $ N $是全连续的,因此是凝聚映射(见注2.1(ⅱ)).

第3步  $ N $有闭图.

$ x_{n}\rightarrow x^{\ast} $, $ h_{n}\in N(x_{n}) $,且$ h_{n}\rightarrow h^{\ast} $.我们将证明$ h^{\ast}\in N(x^{\ast}) $. $ h_{n}\in N(x_{n}) $意味着存在$ v_{n}\in \widetilde{S}_{F, x_{n}} $满足

下面我们需要证明存在$ v^{\ast}\in \widetilde{S}_{F, x^{\ast}} $,对每个$ t\in J $满足

因为$ x_{n}\rightarrow x^{\ast} $, $ h_{n}\rightarrow h^{\ast} $, $ \tau $$ I_{k} $ ($ k = 1, 2, \cdots , m $)是连续的,当$ n\rightarrow\infty $我们有

$ \begin{eqnarray} &&\biggl\|h_{n}(t)-x_{n}(0)- \int^{t}_{0}[\tau(s, x_{n})-x_{n}(s)]{\rm d}s-\sum\limits_{0<t_{k}<t}I_{k}(\tau(t_{k}, x_{n}(t_{k})))\\ &&- \left[h^{\ast}(t)-x^{\ast}(0)- \int^{t}_{0}[\tau(s, x^{\ast})-x^{\ast}(s)]{\rm d}s-\sum\limits_{0<t_{k}<t}I_{k}(\tau(t_{k}, x^{\ast}(t_{k})))\right]\biggl\|_{PC}\rightarrow0, \end{eqnarray} $

考虑线性连续算子$ \Gamma: L^{1}(J, {\Bbb R} )\rightarrow C(J, {\Bbb R} ) $,有

注意到$ \widetilde{S}_{F, x} $非空,由引理2.1知, $ \Gamma\circ \widetilde{S_{F}} $是闭图.而且,

$ \begin{equation} h_{n}(t)-x_{n}(0)- \int^{t}_{0}[\tau(s, x_{n})-x_{n}(s)]{\rm d}s-\sum\limits_{0<t_{k}<t}I_{k}(\tau(t_{k}, x_{n}(t_{k})))\in \Gamma(\widetilde{S}_{F, x_{n}}). \end{equation} $

因为$ x_{n}\rightarrow x^{\ast} $,由(3.6)和(3.7)式知,存在$ v^{\ast}\in \widetilde{S}_{F, x^{\ast}} $满足

由第1步到第3步可知, $ N $是具有凸闭值的,全连续的,且上半连续的多值映射.

第4步  集合$ \Re = \{x\in PC(J, {\Bbb R} ):\mbox {对某些}\ \lambda>1, \ \lambda x\in G(x)\} $有界.

$ x\in\Re $,则对某些$ \lambda>1 $, $ \lambda x\in N(x) $.所以,对每个$ t\in J $,有

$ \rho_{2} = \max(\sup\limits_{t\in J}|\alpha(t)|, \sup\limits_{t\in J}|\beta(t)|) $,由(3.4)式得$ |\tau(t, x)|\leq\rho_{2} $.由条件(H1)知存在$ \varphi_{\rho_{2}}\in L^{1}(J, [0, +\infty)) $满足

$ \begin{equation} \sup\{|v|: v\in F(t, \tau(t, x))\}\leq\varphi_{\rho_{2}}(t). \end{equation} $

由条件(H3) $ I_{k} $中的连续性和(3.4)式,存在$ c'_{k}>0 $, $ k = 1, \cdots , m $使得$ |I_{k}(\tau(t_{k}, x(t_{k})))|\leq c'_{k} $.所以由(3.3)和(3.8)式,对每个$ t\in J $我们有

$ K_{0} = \max(|\alpha(0)|, |\beta(0)|)+\|\varphi_{\rho_{2}}\|_{L^{1}}+T\rho_{2} +\sum\limits^{m}_{k = 1}c'_{k} $.应用Gronwall引理(参见文献[6, p36]),对每个$ t\in J $,我们有

所以

这表明集合$ \Re $有界.应用引理2.2, $ N $有一个不动点,此不动点也是系统(3.1)的一个解.

第5步  系统(3.1)的解$ x $满足

$ \begin{equation} \beta(t)\leq x(t)\leq \alpha(t), \ t\in J, \end{equation} $

$ \begin{equation} \beta(0)\leq x(0)-g(\tau(0, x), \tau(T, x))\leq \alpha(0). \end{equation} $

首先我们证明(3.9)式.设$ x $是(3.1)式的一个解,我们证明对所有的$ t\in J $, $ x(t)\leq \alpha(t) $.应用反证法证明,假设在点$ s_{0}\in J $处, $ x-\alpha $取得最大正值.由(3.3)式知, $ s_{0}\neq0 $,我们只需考虑$ s_{0}\in(0, T] $.于是存在$ s_{1}\in(0, s_{0}) $, $ s_{1}\neq t_{k}\ (k = 1, 2, \cdots , m) $使得

于是当$ t\in[s_{1}, s_{0}] $, $ \alpha(t)< x(t) $,所以$ \tau(t, x) = \alpha(t) $, $ t\in A_{1} $.此时存在$ v\in \widetilde{S}_{F, x} $满足$ v(t)\in F(t, \alpha(t)) $, $ v(t)\leq v_{1}(t) $使得

这是矛盾的.因此,对所有的$ t\in J $, $ x(t)\leq\alpha(t) $.同样我们可以证明$ \beta(t)\leq x(t) $, $ t\in J $,在此省略证明过程.因此(3.9)式成立.

其次我们证明系统(3.1)的解$ x $满足(3.10)式.假设

$ \begin{equation} \beta(0)>x(0)-g(\tau(0, x), \tau(T, x)). \end{equation} $

由系统(3.1)的边界条件和$ \tau $的定义,我们有

$ \begin{equation} x(0) = \beta(0). \end{equation} $

由(3.9)式和$ \tau $的定义,我们有

$ \begin{equation} \tau(0, x) = x(0), \ \tau(T, x) = x(T). \end{equation} $

从(3.11)到(3.13)式,我们有

因为在条件(H4)中$ g $关于第二个变量非增,且$ \beta(T)\leq x(T) $,我们有

这与定义2.2的$ g(\beta(0), \beta(T))\leq0 $矛盾.因此我们有

$ \begin{equation} \beta(0)\leq x(0)-g(\tau(0, x), \tau(T, x)). \end{equation} $

同样我们可以证明

$ \begin{equation} x(0)-g(\tau(0, x), \tau(T, x))\leq \alpha(0). \end{equation} $

(3.14)和(3.15)式表明(3.10)式成立.

由第1步到第5步可知,系统(3.1)的解$ x $也是系统(1.1)的解.证毕.

注3.1  如果在系统(1.1)中$ g(x(0), x(T)) = x(0)-x(T) $, i.e., $ x(0) = x(T) $,则$ g $满足条件(H4),此时系统(1.1)变成一个脉冲微分包含周期边值问题.

4 推论

下面我们给出系统(1.1)不同的反向上下解定义,都可以得到系统(1.1)解的存在性结果.

定义4.1  $ \alpha, \ \beta\in PC(J, {\Bbb R} )\cap AC(J', {\Bbb R}) $称为问题(1.1)的反向相关上下解,如果$ \beta(t)\leq\alpha(t) $, $ t\in J $,且存在$ v_{1}, \ v_{2}\in L^{1}(J, {\Bbb R} ) $满足

推论4.1  假设(H1), (H3)和如下条件成立.

(H5) $ \alpha, \beta\in PC(J, {\Bbb R} )\cap AC(J', {\Bbb R}) $满足定义4.1.

(H6)当$ (x, y)\in[\beta(0), \alpha(0)]\times[\beta(T), \alpha(T)] $, $ g(x, y) $是连续的单值映射,且关于$ y $非减.

则系统(1.1)至少有一个解$ x $,且满足$ \beta(t)\leq x(t)\leq \alpha(t) $, $ t\in J $.

证明过程类似定理3.1的证明,在此我们省略.

注4.1  如果在系统(1.1)中$ g(x(0), x(T)) = x(0)+x(T) $, i.e., $ x(0) = -x(T) $,则$ g $满足条件(H6),此时系统(1.1)变成一个脉冲微分包含反周期边值问题.

定义4.2  $ \alpha, \ \beta\in PC(J, {\Bbb R} )\cap AC(J', {\Bbb R}) $称为问题(1.1)的反向相关上下解,如果$ \beta(t)\leq\alpha(t) $, $ t\in J $,且存在$ v_{1}, \ v_{2}\in L^{1}(J, {\Bbb R} ) $满足

推论4.2  假设条件(H1), (H3), (H4)和如下条件成立.

(H7) $ \alpha, \beta\in PC(J, {\Bbb R} )\cap AC(J', {\Bbb R}) $满足定义4.2.

则系统(1.1)至少有一个解$ x $,且满足$ \beta(t)\leq x(t)\leq \alpha(t) $, $ t\in J $.

  我们把系统(1.1)转换成不动点问题.考虑如下问题

$\left\{ \begin{array}{ll} x'(t)+x(t)\in F_{1}(t, x(t)), \ \ t\in J', \\ \Delta x(t_{k}) = I_{k}(\tau(t_{k}, x(t_{k}))), \ k = 1, \cdots , m, \\ x(0) = \tau(0, x(0)+g(\tau(0, x), \tau(T, x))), \end{array} \right.$

其中$ F_{1} $, $ \tau $的定义同(3.1)式.推论4.2剩下的证明类似定理3.1的证明,在此我们省略.

定义4.3  $ \alpha, \ \beta\in PC(J, {\Bbb R} )\cap AC(J', {\Bbb R} ) $称为问题(1.1)的反向上下解,如果$ \beta(t)\leq\alpha(t) $, $ t\in J $,且存在$ v_{1}, \ v_{2}\in L^{1}(J, {\Bbb R} ) $满足

推论4.3  假设条件(H1), (H3), (H6)和如下条件成立.

(H8) $ \alpha, \beta\in PC(J, {\Bbb R} )\cap AC(J', {\Bbb R} ) $满足定义4.3.

则系统(1.1)至少有一个解$ x $,且满足$ \beta(t)\leq x(t)\leq \alpha(t) $, $ t\in J $.

证明过程类似推论4.2的证明,在此我们省略.

参考文献

Ahmad B , Nieto J J .

A study of impulsive fractional differential inclusions with anti-periodic boundary conditions

Fract Differ Calc, 2012, 2 (1): 1- 15

URL     [本文引用: 1]

Bainov D D, Simeonov P S. Impulsive Differential Equations:Periodic Solutions and Applications. Harlow:Longman, 1993

[本文引用: 2]

Benchohra M , Graef J R , Ntouyas S K , Ouahab A .

Upper and lower solutions method for impulsive differential inclusions with nonlinear boundary conditions and variable times

Dyn Contin Discrete Impuls Syst Ser A Math Anal, 2015, 12 (3/4): 383- 396

URL     [本文引用: 1]

Benchohra M , Henderson J , Ntouyas S K .

On first order impulsive differential inclusions with periodic boundary conditions

Dyn Contin Discrete Impuls Syst Ser A Math Anal, 2002, 9 (3): 417- 427

URL     [本文引用: 2]

Gabor G .

Differential inclusions with state-dependent impulses on the half-line:New Fréchet space of functions and structure of solution sets

J Math Anal Appl, 2017, 446 (2): 1427- 1448

DOI:10.1016/j.jmaa.2016.09.046      [本文引用: 1]

Hale J K. Ordinary Differential Equations. New York:John Wiley and Sons, 1969

[本文引用: 1]

Hadjian A , Heidarkhani S .

Existence of one non-trivial anti-periodic solution for second-order impulsive differential inclusions

Math Methods Appl Sci, 2017, 40 (14): 5009- 5017

DOI:10.1002/mma.4365      [本文引用: 1]

Heidarkhani S , Afrouzi G A , Hadjian A , Henderson J .

Existence of infinitely many anti-periodic solutions for second-order impulsive differential inclusions

Electron J Differ Equ, 2013, 2013 (97): 1- 13

URL     [本文引用: 1]

Kamenskii M, Obukhovskii V, Zecca P. Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces. Berlin:Walter de Gruyter Co, 2001

[本文引用: 1]

Lasota A , Opial Z .

An application of the Kakutani-Ky-Fan theorem in the theory of ordinary differential equations

Bull Acad Polon Sci Math Astronom Physiques, 1965, 13: 781- 786

[本文引用: 2]

Martelli M .

A Rothe's type theorem for noncompact acyclic-valued maps

Boll Unione Mat Ital, 1975, 4 (3): 70- 76

URL     [本文引用: 1]

Nyamoradi N .

Existence and multiplicity of solutions for second-order impulsive differential inclusions

J Contemp Math Anal, 2014, 49 (1): 33- 41

DOI:10.3103/S106836231401004X      [本文引用: 1]

/