1 |
Ahmad B , Nieto J J . A study of impulsive fractional differential inclusions with anti-periodic boundary conditions. Fract Differ Calc, 2012, 2 (1): 1- 15
|
2 |
Bainov D D, Simeonov P S. Impulsive Differential Equations:Periodic Solutions and Applications. Harlow:Longman, 1993
|
3 |
Benchohra M , Graef J R , Ntouyas S K , Ouahab A . Upper and lower solutions method for impulsive differential inclusions with nonlinear boundary conditions and variable times. Dyn Contin Discrete Impuls Syst Ser A Math Anal, 2015, 12 (3/4): 383- 396
|
4 |
Benchohra M , Henderson J , Ntouyas S K . On first order impulsive differential inclusions with periodic boundary conditions. Dyn Contin Discrete Impuls Syst Ser A Math Anal, 2002, 9 (3): 417- 427
|
5 |
Gabor G . Differential inclusions with state-dependent impulses on the half-line:New Fréchet space of functions and structure of solution sets. J Math Anal Appl, 2017, 446 (2): 1427- 1448
doi: 10.1016/j.jmaa.2016.09.046
|
6 |
Hale J K. Ordinary Differential Equations. New York:John Wiley and Sons, 1969
|
7 |
Hadjian A , Heidarkhani S . Existence of one non-trivial anti-periodic solution for second-order impulsive differential inclusions. Math Methods Appl Sci, 2017, 40 (14): 5009- 5017
doi: 10.1002/mma.4365
|
8 |
Heidarkhani S , Afrouzi G A , Hadjian A , Henderson J . Existence of infinitely many anti-periodic solutions for second-order impulsive differential inclusions. Electron J Differ Equ, 2013, 2013 (97): 1- 13
|
9 |
Kamenskii M, Obukhovskii V, Zecca P. Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces. Berlin:Walter de Gruyter Co, 2001
|
10 |
Lasota A , Opial Z . An application of the Kakutani-Ky-Fan theorem in the theory of ordinary differential equations. Bull Acad Polon Sci Math Astronom Physiques, 1965, 13: 781- 786
|
11 |
Martelli M . A Rothe's type theorem for noncompact acyclic-valued maps. Boll Unione Mat Ital, 1975, 4 (3): 70- 76
|
12 |
Nyamoradi N . Existence and multiplicity of solutions for second-order impulsive differential inclusions. J Contemp Math Anal, 2014, 49 (1): 33- 41
doi: 10.3103/S106836231401004X
|