数学物理学报, 2019, 39(4): 865-874 doi:

论文

具有快慢层的非光滑奇异摄动问题的空间对照结构

陈华雄,1, 王岩岩1, 倪明康2

The Contrast Structure for the Singularly Perturbed Problem with Slow-Fast Layers and Discontinuous Righthand Side

Chen Huaxiong,1, Wang Yanyan1, Ni Mingkang2

通讯作者: 陈华雄, E-mail: chen410401301@163.com

收稿日期: 2017-12-12  

基金资助: 国家自然科学基金.  61703447
河南省高等学校重点科研项目.  19A110038
河南省高等学校重点科研项目.  18A110039
周口师范学院科研基金.  ZKNUC2016012
周口师范学院科研基金.  ZKNUC2017020
周口师范学院科研基金.  ZKNUB2201806

Received: 2017-12-12  

Fund supported: the NSFC.  61703447
the Key Research Projects in University of Henan Province.  19A110038
the Key Research Projects in University of Henan Province.  18A110039
the Research Fund Projects of Zhoukou Normal University.  ZKNUC2016012
the Research Fund Projects of Zhoukou Normal University.  ZKNUC2017020
the Research Fund Projects of Zhoukou Normal University.  ZKNUB2201806

摘要

该文研究了具有快慢层的非光滑奇异摄动问题的空间对照结构.利用边界层函数法构造了该问题的形式渐近解,并运用"缝接法"证明了问题光滑解的存在性以及渐近解的一致有效性.最后,通过例子验证了所得结果的有效性.

关键词: 奇异摄动 ; 空间对照结构 ; 边界层函数法 ; 缝接法

Abstract

This paper discusses the contrast structure solution for the singularly perturbed problem with slow-fast layers and discontinuous righthand side. By applying the boundary function method, the asymptotic solution of this problem is constructed. Then using the sewing connection method, the existence of the solution is shown and the asymptotic solution is proved to be uniformly valid. Finally, an example is given to illustrate the main results.

Keywords: Singular perturbation ; Contrast structure ; Boundary layer function method ; Sewing connection method

PDF (371KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

陈华雄, 王岩岩, 倪明康. 具有快慢层的非光滑奇异摄动问题的空间对照结构. 数学物理学报[J], 2019, 39(4): 865-874 doi:

Chen Huaxiong, Wang Yanyan, Ni Mingkang. The Contrast Structure for the Singularly Perturbed Problem with Slow-Fast Layers and Discontinuous Righthand Side. Acta Mathematica Scientia[J], 2019, 39(4): 865-874 doi:

1 引言

奇异摄动问题作为应用数学密切关注的研究对象之一[1],广泛存在于流体力学[2]、大气等离子体[3]、生物和生态[4]等实际问题中.在这些奇异摄动问题中,有些问题往往涉及到多个小参数,如下列齐次线性方程的初值问题

$\begin{eqnarray}\label{60} \left\{\begin{array}{ll} \epsilon x''+\mu ax+bx=0, \, \ 0<t<1, \\ x(0)=1, \, \ x'(0)=0, \end{array}\right. \end{eqnarray} $

其中, $a, \, \ b$为正常数,而$\epsilon, \, \ \mu$为小参数,且当$\mu$趋于零时, $\eta=\epsilon/\mu^{2}$也趋于零.

文献[5]和[6]分别讨论了问题(1.1)渐近解的构造及其极限性态行为.通过分析,问题(1.1)的解在$t=0$附近分别有宽度为$\xi=\mu$$\xi\eta=\epsilon/\mu$的边界层,并且$\xi\eta$$\xi$更小.因此,在$t=0$附近有两个层,构成“层中层”,即形成“套层”.换而言之,问题(1.1)在边界层处的时间变化尺度不一样,从而产生不同类型的边界层,即存在快慢层.

本文将研究一类具有快慢层的非光滑奇异摄动问题的空间对照结构,而这类快慢层出现在不同端点的邻域附近内.

考虑如下的奇异摄动方程

$\begin{eqnarray}\label{61}\left\{\begin{array}{ll}\epsilon^{4}y''={\rm sgn}(-t)A(y, t)\epsilon y'+B(y, t), \quad -1\leq t\leq 1, \\y(-1, \epsilon)=a, \, \ y(1, \epsilon)=b, \end{array}\right.\end{eqnarray}$

其中, $\epsilon$是小参数, ${\rm sgn}$为符号函数.

$\epsilon y'=z$,则方程(1.2)可化为等价的方程组

$\begin{eqnarray}\label{62}\left\{\begin{array}{ll}\epsilon y'=z, \\\epsilon^{3}z'={\rm sgn}(-t)A(y, t)z+B(y, t), \\y(-1, \epsilon)=a, \, \ y(1, \epsilon)=b.\end{array}\right.\end{eqnarray}$

先提出下列假设.

假设1.1  函数$A(y, t)$$ B(y, t)$$D=\{(y, t):|y|\leq l, \, \ -1\leq t\leq 1\}$上充分光滑,其中$l$是给定的正实数.

假设1.2  函数$A(y, t)$满足$A(y, t)>0$.退化方程$B(y, t)$有两个孤立根$\varphi_{i}(t), \, \ i=1, 2$.不妨令$\varphi_{1}(t)<\varphi_{2}(t)$,并且满足不等式

在上述的假设下,方程(1.3)在区间$[-1, 1]$上可存在空间对照结构解,而且解在不同端点的邻域附近产生不同类型的边界层.为了得到其对应的光滑渐近解,在$t=0$处将方程(1.3)分成左右两个问题.

左问题: $-1\leq t\leq 0$,

$\begin{eqnarray}\label{63}\left\{\begin{array}{ll}\epsilon y'^{(-)}=z^{(-)}, \\\epsilon^{3}z'^{(-)}=A(y^{(-)}, t)z^{(-)}+B(y^{(-)}, t), \\y^{(-)}(-1, \epsilon)=a, \, \ y^{(-)}(0, \epsilon)=p(\epsilon).\end{array}\right.\end{eqnarray}$

右问题: $0\leq t\leq 1$,

$\begin{eqnarray}\label{64}\left\{\begin{array}{ll}\epsilon y'^{(+)}=z^{(+)}, \\\epsilon^{3}z'^{(+)}=-A(y^{(+)}, t)z^{(+)}+B(y^{(+)}, t), \\y^{(+)}(0, \epsilon)=p(\epsilon), \, \ y^{(+)}(1, \epsilon)=b, \end{array}\right.\end{eqnarray}$

其中, $p(\epsilon)=p_{0}+\epsilon p_{1}+\epsilon^{2}p_{2}+\cdots$. $p_{i}$为待定常数,由下面的光滑性条件(1.6)来确定.

$\begin{eqnarray}\label{65}y'^{(-)}(0, \epsilon)=y'^{(+)}(0, \epsilon).\end{eqnarray}$

2 渐近解的构造

在上述的假设下,此时左问题(1.4)在$t=-1$的邻域附近出现慢层(时间变化尺度为$1/\epsilon$),在$t=0$的邻域附近则出现快层(时间变化尺度为$1/\epsilon^{3}$).而右问题(1.5)在$t=0$的邻域附近出现快层(时间变化尺度为$1/\epsilon^{3}$),在$t=1$的邻域附近出现慢层(时间变化尺度为$1/\epsilon$).因此,根据边界层函数法[7],构造问题(1.3)如下形式的渐近解

其中, $\tau=\frac{t+1}{\epsilon}$, $\tau_{0}=\frac{t}{\epsilon^{3}}$, $\tau_{1}=\frac{t-1}{\epsilon}$.

正则部分$\bar{x}^{(\mp)}(t, \epsilon)$,左边界层部分$L{x}(\tau, \epsilon)$以及右边界层部分$R{x}(\tau_{1}, \epsilon)$具有相同的渐近展开式,即有如下形式

$ \begin{equation}\label{68} \bar{x}^{(\mp)}(t, \epsilon)=\bar{x}_{0}^{(\mp)}(t)+\epsilon \bar{x}_{1}^{(\mp)}(t)+\epsilon^{2}\bar{x}_{2}^{(\mp)}(t)+\cdots, \end{equation}$

$ \begin{equation}\label{69} Lx(\tau, \epsilon)=L_{0}x(\tau)+\epsilon L_{1}x(\tau)+\epsilon^{2}L_{2}x(\tau)+\cdots, \end{equation}$

$\begin{equation}\label{610} Rx(\tau_{1}, \epsilon)=R_{0}x(\tau_{1})+\epsilon R_{1}x(\tau_{1})+\epsilon^{2}R_{2}x(\tau_{1})+\cdots, \end{equation}$

这里$x=(y, z)^{T}$.但不同的是,此时内部层部分$Q^{(\mp)}y(\tau_{0}, \epsilon)$$Q^{(\mp)}z(\tau_{0}, \epsilon)$的渐近展式却不一样,分别为

$ \begin{equation}\label{611} Q^{(\mp)}y(\tau_{0}, \epsilon)=Q_{0}^{(\mp)}y(\tau_{0})+\epsilon Q_{1}^{(\mp)}y(\tau_{0})+\epsilon^{2}Q_{2}^{(\mp)}y(\tau_{0})+\cdots, \end{equation}$

$ \begin{equation}\label{612} Q^{(\mp)}z(\tau_{0}, \epsilon)=\epsilon^{-2}Q_{-2}^{(\mp)}z(\tau_{0})+\epsilon^{-1}Q_{-1}^{(\mp)}z(\tau_{0})+Q_{0}^{(\mp)}z(\tau_{0})+\cdots. \end{equation}$

将(2.1)-(2.5)式分别代入上述相应的左问题和右问题中,通过分离变量并比较$\epsilon$的同次幂系数,则可确定渐近解级数各项系数所需的方程和定解条件.

(1)正则级数(2.1)各项系数的确定.

确定主项$\bar{y}_{0}^{(\mp)}(t)$$\bar{z}_{0}^{(\mp)}(t)$所满足的方程

其中, $A^{(-)}=A, \, \ A^{(+)}=-A$.这里讨论的是从$\varphi_{1}(t)$$\varphi_{2}(t)$的解,即取$\bar{y}_{0}^{(\mp)}(t)=\varphi_{1, 2}(t)$.

确定$\bar{y}_{k}^{(\mp)}(t)$$\bar{z}_{k}^{(\mp)}(t)$所满足的方程

$\begin{eqnarray}\label{616} \left\{\begin{array}{ll} \displaystyle\frac{\rm d}{{\rm d}t}\bar{y}_{k-1}^{(\mp)}=\bar{z}_{k}^{(\mp)}, \\ A^{(\mp)}(\bar{y}_{0}^{(\mp)}, t)\bar{z}_{k}^{(-)}+B_{y}(\bar{y}_{0}^{(\mp)}, t)\bar{y}_{k}^{(\mp)}+f_{k}^{(\mp)}(t)=0, \end{array}\right. \end{eqnarray} $

这里$f_{k}^{(\mp)}(t)$是关于$\bar{y}_{j}^{(\mp)}(t), \, \ \bar{z}_{j}^{(\mp)}(t), \, \ j<k$的复合已知函数.根据假设1.2,可从(2.6)式直接解得

这样就确定正则级数(2.1)的所有系数.

(2)左边界层级数(2.2)各项系数的确定.

确定$L_{0}y(\tau), \, \ L_{0}z(\tau)$所满足的方程和定解条件

$\begin{eqnarray}\label{618} \left\{\begin{array}{ll} \displaystyle\frac{{\rm d}L_{0}y}{{\rm d}\tau}=L_{0}z, \, \ \bar{A}(\tau)L_{0}z+\bar{B}(\tau)=0, \\ \varphi_{1}(-1)+L_{0}y(0)=a, \, \ L_{0}y(+\infty)=0, \end{array}\right. \end{eqnarray}$

其中, “$\bar{}$ ”表示对应函数在点$(\varphi_{1}(-1)+L_{0}y(\tau), -1)$处的取值.

考虑到假设1.2,方程(2.7)可改写为

$\begin{eqnarray}\label{619} \left\{\begin{array}{ll} \displaystyle\frac{{\rm d}L_{0}y}{{\rm d}\tau}=-\frac{\bar{B}(\tau)}{\bar{A}(\tau)}\equiv G(L_{0}y), \\ L_{0}y(0)=a-\varphi_{1}(-1), \, \ L_{0}y(+\infty)=0, \end{array}\right. \end{eqnarray} $

其中,函数$G(L_{0}y)=-B(\varphi_{1}(-1)+L_{0}y(\tau), -1)/A(\varphi_{1}(-1)+L_{0}y(\tau), -1)$.方程(2.8)有平衡点$L_{0}y(\tau)=0$,且该平衡点是渐近稳定的.这是因为

$\begin{eqnarray}\label{620} \displaystyle\frac{{\rm d}G(L_{0}y)}{{\rm d} L_{0}y}(0)=-\frac{\bar{B}_{y}\bar{A}-\bar{B}\bar{A}_{y}}{\bar{A}^{2}}\Big|_{L_{0}y=0}<0. \end{eqnarray}$

为了保证问题(2.8)的解$L_{0}y(\tau)$的存在性,还需如下假设.

假设2.1  初值$a-\varphi_{1}(-1)$落在方程(2.8)平衡点$L_{0}y(\tau)=0$的吸引域内.

确定$L_{k}y(\tau), \, \ L_{k}z(\tau)$所满足的方程和定解条件

$\begin{eqnarray}\label{621}\left\{\begin{array}{ll}\displaystyle\frac{{\rm d}L_{k}y}{{\rm d}\tau}=L_{k}z, \\\bar{A}(\tau)L_{k}z+[\bar{A}_{y}(\tau)L_{0}z+\bar{B}_{y}(\tau)]L_{k}y+\bar{h}_{k}(\tau)=0, \\\bar{y}^{(-)}_{k}(-1)+L_{k}y(0)=0, \, \ L_{k}y(+\infty)=0, \end{array}\right.\end{eqnarray}$

其中, $\bar{h}_{k}(\tau)$是关于$L_{j}z(\tau)$, $L_{j}y(\tau), \, \ 0\leq j<k$的已知函数.方程(2.10)可写成如下等价的形式

$\begin{eqnarray}\label{622}\left\{\begin{array}{ll}\displaystyle\frac{{\rm d}L_{k}y}{{\rm d}\tau}=-\frac{[\bar{A}_{y}(\tau)L_{0}z+\bar{B}_{y}(\tau)]L_{k}y+\bar{h}_{k}(\tau)}{\bar{A}(\tau)}, \\\bar{y}^{(-)}_{k}(-1)+L_{k}y(0)=0, \, \ L_{k}y(+\infty)=0.\end{array}\right.\end{eqnarray}$

从方程(2.11)则可确定$L_{k}y(\tau)$.至此就完全确定的左边界层(2.2)中的每一项系数,而且满足下列估计式.

引理2.1  左边界层函数满足下列不等式

其中, $C>0$$\kappa>0$.

  当$k=0$时,由方程(2.8)可得

故可解得

结合(2.9)式,所以存在常数$T>0$$\overline{\kappa}>\underline{\kappa}>0$,使得当$\tau>T$时,有下列不等式成立

于是就可得到$L_{0}y(\tau)$的估计式

则有$| L_{0}y(\tau)|< C{\rm e}^{-\kappa\tau}$.$k>0$时,则根据(2.11)式可得到结论.

(3)内部层级数(2.4), (2.5)各项系数的确定.

确定主项$Q^{(\mp)}_{0}y(\tau_{0})$$Q^{(\mp)}_{-2}z(\tau_{0})$的方程和定解条件

$ \begin{eqnarray}\label{628} \left\{\begin{array}{ll} \displaystyle\frac{{\rm d}Q^{(\mp)}_{0}y}{{\rm d}\tau_{0}}=Q^{(\mp)}_{-2}z, \\ \displaystyle\frac{{\rm d}Q^{(\mp)}_{-2}z}{{\rm d}\tau_{0}}=A^{(\mp)}(\varphi_{1, 2}(0)+Q^{(\mp)}_{0}y, 0)Q^{(\mp)}_{-2}z, \\ \varphi_{1, 2}(0)+Q^{(\mp)}_{0}y(0)=p_{0}, \, \ Q^{(\mp)}_{0}y(\mp\infty)=0. \end{array}\right. \end{eqnarray} $

作变量替换$\tilde{y}^{(\mp)}=\varphi_{1, 2}(0)+Q^{(\mp)}_{0}y(\tau_{0}), \, \ \tilde{z}^{(\mp)}=Q^{(\mp)}_{-2}z(\tau_{0})$,则方程(2.12)可化为

$ \begin{eqnarray}\label{629} \left\{\begin{array}{ll} \displaystyle\frac{{\rm d}\tilde{z}^{(\mp)}}{{\rm d}\tau_{0}}=A^{(\mp)}(\tilde{y}^{(\mp)}, 0)\tilde{z}^{(\mp)}, \, \ \displaystyle\frac{{\rm d}\tilde{y}^{(\mp)}}{{\rm d}\tau_{0}}=\tilde{z}^{(\mp)}, \\ \tilde{y}^{(\mp)}(0)=p_{0}, \, \ \tilde{y}^{(\mp)}(\mp\infty)=\varphi_{1, 2}(0). \end{array}\right. \end{eqnarray} $

故可得确定求$\tilde{y}^{(\mp)}(\tau_{0})$的方程和边值条件

$\begin{eqnarray}\label{630} \left\{\begin{array}{ll} \displaystyle\frac{{\rm d}\tilde{y}^{(\mp)}}{{\rm d}\tau_{0}}=\displaystyle\int^{\tilde{y}^{(\mp)}} _{\varphi_{1, 2}(0)}A^{(\mp)}(y, 0){\rm d}y\equiv Y^{(\mp)}(\tilde{y}^{(\mp)}), \\ \tilde{y}^{(\mp)}(0)=p_{0}. \end{array}\right. \end{eqnarray}$

方程(2.14)有衡点$\tilde{y}^{(\mp)}(\tau_{0})=\varphi_{1, 2}(0)$.根据假设1.2,有

同样地,从方程(2.14)可得

根据光滑性条件(1.6),可得

即得确定$p_{0}$的表达式为

$\begin{eqnarray}\label{649}\tilde{I}(p_{0})=\int^{p_{0}}_{\varphi_{2}(0)}A(y, 0){\rm d}y+\int^{p_{0}}_{\varphi_{1}(0)}A(y, 0){\rm d}y=0, \end{eqnarray}$

引理2.2  在区间$(\varphi_{1}(0), \varphi_{2}(0))$上,方程(2.15)有唯一解$p_{0}$.

  根据

故由介值定理得,存在$p_{0}\in (\varphi_{1}(0), \varphi_{2}(0))$,使得$\tilde{I}(p_{0})=0$.$\tilde{I}'(p_{0})=2A(p_{0}, 0)>0$.$p_{0}$是唯一的.

确定了参数$p_{0}$,通过相平面分析法可知,方程(2.14)解是存在的.至此就完全确定了内部层级数的主项部分.

确定$Q^{(\mp)}_{k}y(\tau_{0})$$Q^{(\mp)}_{k-2}z(\tau_{0})$的方程和定解条件

$\begin{eqnarray}\label{638}\left\{\begin{array}{ll}\displaystyle\frac{{\rm d}Q^{(\mp)}_{k}y}{{\rm d}\tau_{0}}=Q^{(\mp)}_{k-2}z, \\\displaystyle\frac{{\rm d}Q^{(\mp)}_{k-2}z}{{\rm d}\tau_{0}}=\tilde{A}^{(\mp)}Q^{(\mp)}_{k-2}z+\tilde{A}^{(\mp)}_{y}Q_{-2}^{(\mp)}zQ_{k}^{(\mp)}y+\tilde{h}^{(\mp)}_{k}(\tau_{0}), \\Q^{(\mp)}_{k}y(0)=p_{k}-\bar{y}_{k}^{(\mp)}(0), \, \ Q^{(\mp)}_{k}y(\mp\infty)=0, \end{array}\right.\end{eqnarray}$

其中, “$\tilde{}$”表示对应函数在点$(\varphi_{1, 2}(0)+Q^{(\mp)}_{0}y(\tau_{0}), 0)$处的取值, $\tilde{h}^{(\mp)}_{k}(\tau_{0})$为已知的复合函数.从方程(2.16)可计算得

$\begin{eqnarray}\label{639}Q^{(-)}_{k-2}z(0)=A^{(\mp)}(p_{0}, 0)[p_{k}-\bar{y}_{k}^{(\mp)}(0)]+\int^{0}_{\mp\infty}\tilde{h}^{(\mp)}_{k}(\tau_{0}){\rm d}\tau_{0}.\end{eqnarray} $

由光滑性条件(1.6),可得

$\begin{eqnarray}\label{647}\bar{z}^{(-)}_{k-2}(0)+ Q^{(-)}_{k-2}z(0)=\bar{z}^{(+)}_{k-2}(0)+ Q^{(+)}_{k-2}z(0), \, \ k\geq2.\end{eqnarray}$

从(2.17)和(2.18)式,得到

解得

其中

这样内部层级数(2.4), (2.5)的各项系数就确定了,且满足以下估计式.

引理2.3  内部层函数满足下列不等式

其中, $C>0$$\kappa>0$.

(4)右边界层级数(2.3)各项系数的确定

确定$R_{0}y(\tau), \, \ R_{0}z(\tau)$所满足的方程和定解条件

$\begin{eqnarray}\label{641}\left\{\begin{array}{ll}\displaystyle\frac{{\rm d}R_{0}y}{{\rm d}\tau}=R_{0}z, \, \ -\hat{A}(\tau_{1})R_{0}z+\hat{B}(\tau_{1})=0, \\\varphi_{2}(1)+R_{0}y(0)=b, \, \ R_{0}y(-\infty)=0, \end{array}\right.\end{eqnarray}$

其中, “$\hat{}$ ”表示对应函数在点$(\varphi_{2}(1)+R_{0}y(\tau_{1}), 1)$处的取值.

根据假设1.2,方程(2.19)可改写为

$\begin{eqnarray}\label{642} \left\{\begin{array}{ll} \displaystyle\frac{{\rm d}R_{0}y}{{\rm d}\tau_{1}}=\frac{\hat{B}(\tau_{1})}{\hat{A}(\tau_{1})}\equiv D(R_{0}y), \\ R_{0}y(0)=b-\varphi_{2}(1), \, \ R_{0}y(-\infty)=0. \end{array}\right. \end{eqnarray} $

方程(2.20)有平衡点$R_{0}y(\tau_{1})=0$,且该平衡点是渐近不稳定的.这是因为

为确保问题(2.20)的解$R_{0}y(\tau_{1})$的存在性,还需下列假设.

假设2.2  初值$b-\varphi_{2}(1)$落在方程(2.20)平衡点$R_{0}y(\tau_{1})=0$的影响域内.

确定$R_{k}y(\tau_{1}), \, \ R_{k}z(\tau_{1})$所满足的方程和定解条件

$\begin{eqnarray}\label{644}\left\{\begin{array}{ll}\displaystyle\frac{{\rm d}R_{k}y}{{\rm d}\tau_{1}}=R_{k}z, \\-\hat{A}(\tau_{1})R_{k}z+[-\hat{A}_{y}(\tau_{1})R_{0}z+\hat{B}_{y}(\tau_{1})]R_{k}y+\hat{h}_{k}(\tau_{1})=0, \\\bar{y}^{(+)}_{k}(1)+R_{k}y(0)=0, \, \ R_{k}y(-\infty)=0, \end{array}\right.\end{eqnarray}$

其中, $\hat{h}_{k}(\tau_{1})$是关于$R_{j}z(\tau_{1})$, $R_{j}y(\tau_{1}), \, \ 0\leq j<k$的已知函数.故由(2.21)式则可确定出$R_{k}y(\tau_{1})$.这样就确定了右边界层部分的每一项系数,且满足下列估计.

引理2.4  右边界层函数满足下列不等式

其中, $C>0$$\kappa>0$.

注2.1  针对左问题(1.4),作变量替换$\tau=\frac{t-t_{0}}{\epsilon^{\alpha}}$,则方程(1.4)可化为

$\begin{eqnarray}\label{6300}\left\{\begin{array}{ll}\epsilon^{1-\alpha} \displaystyle\frac{\rm d}{{\rm d}\tau}y^{(-)}=z^{(-)}, \\\epsilon^{3-\alpha}\displaystyle\frac{\rm d}{{\rm d}\tau}z^{(-)}=A(y^{(-)}, t)z^{(-)}+B(y^{(-)}, t).\end{array}\right.\end{eqnarray}$

通过消去方程(2.22)中的第一个和第二个方程最高阶导数前的$\epsilon$,则有$\alpha=1$$\alpha=3$.故左问题(1.4)在边界邻域附近内出现的时间变化尺度为$1/\epsilon$$1/\epsilon^{3}$.

$\alpha=1$时,左问题(1.4)的附加方程为

$\begin{eqnarray}\label{6301} \left\{\begin{array}{ll} \displaystyle\frac{\rm d}{{\rm d}\tau}y^{(-)}=z^{(-)}, \\ A(y^{(-)}, t)z^{(-)}+B(y^{(-)}, t)=0. \end{array}\right. \end{eqnarray} $

类似于(2.7)式的讨论,方程(2.23)有平衡点$y^{(-)}=\varphi_{1}(t)$,且该平衡点是渐近稳定的.因此,在$t=-1$的邻域附近出现慢层(时间变化尺度为$1/\epsilon$).

$\alpha=3$时,考虑到$\epsilon$的奇异性,则左问题(1.4)的附加方程为

$ \begin{eqnarray}\label{6302} \left\{\begin{array}{ll} \displaystyle\frac{\rm d}{{\rm d}\tau}y^{(-)}=z^{(-)}, \\ \displaystyle\frac{\rm d}{{\rm d}\tau}z^{(-)}=A(y^{(-)}, t)z^{(-)}. \end{array}\right. \end{eqnarray}$

类似于(2.12)式的讨论,方程(2.24)有平衡点$y^{(-)}=\varphi_{1}(t)$,且该平衡点是渐近不稳定的.因此,在$t=0$的邻域附近出现快层(时间变化尺度为$1/\epsilon^{3}$).

3 解的存在性与余项估计

利用“缝接法”[8]证明问题多尺度渐近解的存在性.令

作差值函数

考虑到多尺度渐近解的构造,则有

可见,当$\epsilon$充分小,并且取$\delta$为异号值时, $L(\tilde{p}, \epsilon)$也异号,所以由介值定理,存在$p^{\ast}\in [p_{n}-\delta, p_{n}+\delta]$,使得$L(p^{\ast}, \epsilon)=0$.

将上述对问题(1.2)所得到的光滑渐近解归结为如下的定理.

定理3.1  在假设1.1、1.2、2.1和2.2下,则存在充分小的$\epsilon_{0}$.$0<\epsilon<\epsilon_{0}$时,问题(1.2)的光滑解$y(t, \epsilon)$存在,且具有如下的渐近表达式和估计

4 例子

考虑如下的奇异摄动方程

$\begin{eqnarray}\label{6102}\left\{\begin{array}{ll}\epsilon^{4}y''={\rm sgn}(-t)\epsilon y'+(y-1-t^{2})(y+1+t^{2}), \\y(-1, \epsilon)=-2, \, \ y(1, \epsilon)=2.\end{array}\right.\end{eqnarray}$

根据本文的算法,方程(4.1)的左问题的正则部分的主项为$\bar{y}_{0}^{(-)}(t)=-1-t^{2}$,而边界层部分的主项分别满足如下方程

$ \begin{eqnarray}\label{11618} \left\{\begin{array}{ll} \displaystyle\frac{{\rm d}L_{0}y}{{\rm d}\tau}=L_{0}z, \, \ L_{0}z+L_{0}y(L_{0}y-4)=0, \\ L_{0}y(0)=0, \, \ L_{0}y(+\infty)=0\end{array}\right. \end{eqnarray}$

$ \begin{eqnarray}\label{11628} \left\{\begin{array}{ll} \displaystyle\frac{{\rm d}Q^{(-)}_{0}y}{{\rm d}\tau_{0}}=Q^{(-)}_{-2}z, \, \ \displaystyle\frac{{\rm d}Q^{(-)}_{-2}z}{{\rm d}\tau_{0}}=Q^{(-)}_{-2}z, \\ Q^{(-)}_{0}y(0)=p_{0}+1, \, \ Q^{(-)}_{0}y(-\infty)=0. \end{array}\right. \end{eqnarray} $

解方程(4.2)和(4.3)可得

这里, $\tau=(t+1)/\epsilon$$\tau_{0}=t/\epsilon^{3}$.

对于方程(4.1)的右问题,同样有

从表达式(2.15),则可知$p_{0}=0$.故方程(4.1)的零次渐近解为

因此,方程(4.1)存在如图 1所示的空间对照结构解.

图 1

图 1   方程(4.1)存在的空间对照结构解$y(t)$,其中, $- - -$$\epsilon=0.001$; ——当$\epsilon=0.02$


参考文献

Barbu L , Morosanu G . Singularly Perturbed Boundary-value Problems. Berlin: Springer Science Business Media, 2007

[本文引用: 1]

张伟江, 周明儒, 倪明康, . 奇异摄动导论. 北京: 科学出版社, 2014

[本文引用: 1]

Zhang Weijiang , Zhou Mingru , Ni Mingkang , et al. Introduction to Singular Perturbation. Beijing: Science Press, 2014

[本文引用: 1]

石兰芳, 欧阳成, 陈丽华, .

一类大气等离子体反应扩散模型的解法

物理学报, 2012, 61 (5): 050203

URL     [本文引用: 1]

Shi Lan-Fang , Ouyang Cheng , Chen Li-Hua , et al.

Solving method of a class of reactive diffusion model for atmospheric plasmas

Acta Phys Sin, 2012, 61 (5): 050203

URL     [本文引用: 1]

Shen Jianhe .

Canard limit cycles and global dynamics in a singularly perturbed predator-prey system with non-monotonic functional response

Nonlinear Analysis:Real World Applications, 2016, 30: 146- 165

URL     [本文引用: 1]

刘树德, 鲁世平, . 奇异摄动边界层和内部层理论. 北京: 科学出版社, 2012

[本文引用: 1]

Liu Shude , Lu Shiping , et al. Boundary Layer and Inner Layer Theory in Singular Perturbation. Beijing: Science Press, 2012

[本文引用: 1]

Robert Jr E . Singular Perturbation Methods for Ordinary Differential Equations. Berlin: Springer Science Business Media, 2012

[本文引用: 1]

瓦西里耶娃,布图索夫.奇异摄动方程解的渐近展开.倪明康,林武忠译.北京:高等教育出版社, 2008

[本文引用: 1]

Vasil'eva, Butuzov. Asymptotic Expansion of Solutions to Singularly Perturbed Equations//Ni M K, Lin W Z (Translator). Beijing:Higher Education Press, 2008

[本文引用: 1]

倪明康, 林武忠. 奇异摄动问题中的渐近理论. 北京: 高等教育出版社, 2009

[本文引用: 1]

Ni Mingkang , Lin Wuzhong . Asymptotic Theory in Singularly Perturbed Problems. Beijing: Higher Education Press, 2009

[本文引用: 1]

/