数学物理学报, 2019, 39(4): 851-864 doi:

论文

一类新的m重Rogers-Ramanujan恒等式及应用

张之正,1,2, 李晓倩,2

A Class of New m-Multisum Rogers-Ramanujan Identities and Applications

Zhang Zhizheng,1,2, Li Xiaoqian,2

通讯作者: 张之正, E-mail: zhzhzhang-yang@163.com

收稿日期: 2017-05-16  

基金资助: 国家自然科学基金.  11871258

Received: 2017-05-16  

Fund supported: the NSFC.  11871258

作者简介 About authors

李晓倩,E-mail:791408196@qq.com , E-mail:791408196@qq.com

摘要

Rogers-Ramanujan恒等式是分拆理论和组合学中著名的恒等式,被广泛的证明和推广.该文应用双边Bailey引理和迭代技巧建立一类新的多重和Rogers-Ramanujan恒等式.

关键词: 双边Bailey引理 ; 移位Bailey对 ; 多重Rogers-Ramanujan恒等式

Abstract

Rogers-Ramanujan identities are among the most famous q-series in partition theory and combinatorics, they have been proved and generalized widely. The purpose of this paper is to establish a class of new multisum Rogers-Ramanujan identities by applying the bilateral Bailey lemma and iterating technique.

Keywords: Bilateral Bailey lemma ; Shifted Bailey pair ; Multisum Rogers-Ramanujan identities

PDF (288KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

张之正, 李晓倩. 一类新的m重Rogers-Ramanujan恒等式及应用. 数学物理学报[J], 2019, 39(4): 851-864 doi:

Zhang Zhizheng, Li Xiaoqian. A Class of New m-Multisum Rogers-Ramanujan Identities and Applications. Acta Mathematica Scientia[J], 2019, 39(4): 851-864 doi:

1 引言

Rogers-Ramanujan恒等式是分拆理论和组合学中最著名的恒等式.推导此类恒等式最常用的方法是Bailey引理, Bailey[6], Slater[12-13]和Andrews[2-3]先后给出了详细的阐述.在文献[5]和[8]中,双边Bailey对被引入以及建立了相应的双边Bailey引理.在本文里,我们利用双边Bailey引理和迭代技巧得到一类新的多重Rogers-Ramanujan恒等式.

为了方便,本文总是假设$|q|<1$.我们使用如下标准的符号

其中$a$为任意复数, $m$为任意整数.为了简便起见,我们记

其中$n$为整数或者无穷.

$q$ -二项式系数定义为

我们假定$\left[{n\atop k}\right]_q=0$,当$k<0$或者$k>n$.我们再引入下述两个基本恒等式.

Jacobi三重积恒等式(参见文献[10, (1.6.1)])

$ \begin{eqnarray}\label{1-1} \sum\limits_{n=-\infty}^{\infty}(-1)^{n}q^{n\choose 2}z^{n}=(q, z, q/z;q)_\infty \end{eqnarray} $

是重要的级数-乘积恒等式之一,在文献[9, 15-16]中有具体的应用.

$q$-Pfaff-Saalschutz求和公式(参见文献[10, (1.7.2)])

$\begin{eqnarray}\label{1-2} _3\phi_2\left[{a, b, q^{-n}\atop c, abq^{1-n}/c};q, q\right]=\frac{(c/a, c/b;q)_n}{(c, c/ab;q)_n}.\end{eqnarray}$

文献[4]中, Andrews给出Bailey对的定义如下:若序列$(\alpha_n(a, q), \beta_n(a, q))$满足下列关系

$\begin{eqnarray}\label{1-3}\beta_n(a, q)=\sum\limits_{j=0}^n\frac{\alpha_j(a, q)}{(q;q)_{n-j}(aq;q)_{n+j}}, \forall n\in{\Bbb N}, \end{eqnarray}$

则称$(\alpha_n(a, q), \beta_n(a, q))$是关于$(a, q)$的Bailey对.

称序列$(\alpha_n(a, q), \beta_n(a, q))$是关于$(a, q)$的双边Bailey对,若满足下列关系

$\begin{eqnarray}\label{1-4}\beta_n(a, q)=\sum\limits_{j\leq{n}}\frac{\alpha_j(a, q)}{(q;q)_{n-j}(aq;q)_{n+j}}, \ \ \ \forall n\in{\Bbb Z}.\end{eqnarray}$

引理1.1(双边Bailey引理)  若$(\alpha_n(a, q), \beta_n(a, q))$是关于$(a, q)$的双边Bailey对,则$(\alpha_n'(a, q), \beta_n'(a, q))$也是,其中

假设序列$\alpha_n(a, q)$$\beta_n(a, q)$满足一定的收敛条件使得两边的无穷级数都绝对收敛.

在双边Bailey引理中,令$\rho_1\rightarrow\infty$, $\rho_2\rightarrow\infty$,则我们有

在文献[9]中, Jouhet指出,当$a=q^{m}$, $m\in{\Bbb N}$时, (1.4)式中右边的无穷级数是有限的,因此称这样的双边Bailey对$(\alpha_n(q^{m}, q), \beta_n(q^{m}, q))$为移位Bailey对. Jouhet还给出了下述一对移位Bailey对.

引理1.2[9,命题2.1]  设$m\in{\Bbb N}$, $(\alpha_n(q^{m}, q), \beta_n(q^{m}, q))$是移位Bailey对,其中

$\begin{equation}\label{1-5}\alpha_n(q^{m}, q)=(-1)^{n}q^{n\choose2}, \end{equation}$

$\begin{equation}\label{1-6}\beta_n(q^{m}, q)=(-1)^{n}q^{n\choose2}(q)_m\left[{m+n\atop m+2n}\right]_q.\end{equation}$

2 Bailey链的双边推广

在文献[7]中, Bressoud, Ismail和Stanton提出了几个新的Bailey链.在这一节里,我们给出文献[7,定理2.2]和[7,定理2.3]的下列双边推广.

定理2.1  若$({\alpha}_{n}(a, q), {\beta}_{n}(a, q))$是关于$(a, q)$的Bailey对,则$({\alpha}_{n}'(a, q), {\beta}_{n}'(a, q))$是关于$(a^4, q^4)$的Bailey对,其中

$\begin{equation}\label{2-1}\beta_n'(a, q)=\sum\limits_{k\leq{n}}\frac{(-Bq;q^2)_{k}(qa^2/B;q^2)_{2n-k}}{(-a^2q^2;q^2)_{2n}(a^4q^2/B^2;q^4)_{n}(q^4;q^4)_{n-k}}a^{2k}B^{-k}q^{k^2}\beta_k(a^2, q^2), \end{equation}$

$\begin{equation}\label{2-2}\alpha_n'(a, q)=\frac{(-Bq;q^2)_n}{(-qa^2/B;q^2)_n}a^{2n}B^{-n}q^{{n^2}}\alpha_{n}(a^2, q^2), \end{equation}$

这里假定相关的级数绝对收敛.

  假设${\alpha}_{n}(a, q)$已成立,将(2.2)式代入等式(1.4)中,然后交换求和顺序,应用$q$-Pfaff-Saalschutz求和公式(1.2)并且令$a\rightarrow -q^{-2n+2r}$, $b\rightarrow -Bq^{1+2r}$, $c\rightarrow a^2q^{4r+2}$, $q\rightarrow q^{2}$, $n\rightarrow n-r$,可得此定理.

在定理2.1中令$B\rightarrow\infty$,则有

在定理2.1令$B\rightarrow 0$,则有

定理2.2  若$({\alpha}_{n}(a, q), {\beta}_{n}(a, q))$是关于$(a, q)$的双边Bailey对,则$({\alpha}_{n}'(a, q), {\beta}_{n}'(a, q))$是关于$(a^3, q^3)$的双边Bailey对,其中

这里假定相关的级数绝对收敛.

  同定理2.1的证明一样,应用等式(1.4)和$q$-Pfaff-Saalschutz求和公式(1.2),并且令$a\rightarrow \omega q^{-n+r}$, $b\rightarrow \omega^2q^{-n+r}$, $c\rightarrow aq^{2r+1}$, $n\rightarrow n-r$,这里$\omega$是三次单位原根,化简即得.

3 多重Rogers-Ramanuan恒等式

在这一节里,我们从移位Bailey对(1.7)和(1.8)式出发,利用文献[1]中的迭代技巧去得到一系列新的多重Rogers-Ramanuan恒等式.

定理3.1  对所有的$k\in{{\Bbb N}^{*}}$, $m\in{\Bbb N}$, $1\leq i\leq k$,我们有

$\begin{eqnarray}&&\sum\limits_{{-\lfloor m/2 \rfloor\leq n_k\leq n_{k-1}\leq\cdots \leq n_1}}\frac{q^{{2{n^{2}_1}}+\cdots+{2{n^{2}_{i-1}}}+{{n^{2}_i}}+\cdots+{{n^{2}_k}}+m(2{n_1}+\cdots+2{n_{i-1}}+n_i+\cdots+n_k)}}{(q^2;q^2)_{n_1-n_2}\cdots(q^2;q^2)_{n_{i-1}-n_{i}}(q)_{n_{i}-n_{i+1}}\cdots(q)_{n_{k-1}-n_k}}\nonumber\\&&\times\frac{1}{(-q;q)_{2{n_{i-1}}+m}}(-1)^{n_{k}}q^{n_{k}\choose2}\left[{m+n_{k}\atop m+2n_{k}}\right]_q\nonumber\\&=&\frac{(q^{2k+2i-1}, q^{(k+i-1)(m+1)}, q^{(k+i-1)(1-m)+1};q^{2k+2i-1})_\infty}{(q^2;q^2)_{\infty}}.\end{eqnarray}$

  若Bailey链表示如下

其中${\alpha}^{(j)}={\alpha}_n^{(j)}, {\beta}^{(j)}={\beta}_n^{(j)}$.迭代(S1) $i-1$ ($i\geq1$)次,并且将其中的$a$替换成$q^{4m}$,则有

$\begin{eqnarray}\label{lattice1-1}{\alpha}_n^{(0)}(q^{m}, q)=q^{4(i-1)n^2+4(i-1)mn}{\alpha}_n^{(i-1)}(q^m, q), \end{eqnarray} $

$\begin{eqnarray}\label{lattice1-2} {\beta}_n^{(0)}(q^m, q)=\sum\limits_{{n_{i-1}\leq n_{i-2}\leq\cdots\leq n_1\leq n}} \frac{q^{4(n^{2}_1+\cdots+n^{2}_{i-1})+4m(n_1+\cdots+n_{i-1})}}{(q^4;q^4)_{n-n_{1}}\cdots(q^4;q^4)_{n_{i-2}-n_{i-1}}} {\beta}_{n_{i-1}}^{(i-1)}(q^m, q). \end{eqnarray} $

应用(S2),可以得到

$\begin{eqnarray}\label{lattice1-3} {\alpha}_n^{(i-1)}(q^{m}, q)=q^{2{n^2}+2mn}{\alpha}_n^{(i)}(q^{2m}, q^2), \end{eqnarray}$

$ \begin{eqnarray}\label{lattice1-4} {\beta}_{n_{i-1}}^{(i-1)}(q^m, q)=\sum\limits_{{n_{i}\leq n_{i-1}}} \frac{q^{2{n^{2}_{i}}+2mn_{i}}}{(q^4;q^4)_{n_{i-1}-n_{i}}(-q^{2+2m};q^2)_{2n_{i-1}}} {\beta}_{n_{i}}^{(i)}(q^{2m}, q^2). \end{eqnarray}$

然后再应用(S1) $k-i$次,并且令$q \rightarrow q^2$,有

$\begin{eqnarray}\label{lattice1-5} {\alpha}_n^{(i)}(q^{2m}, q^2)=q^{2(k-i)n^2+2(k-i)mn}{\alpha}_n^{(k)}(q^{2m}, q^2), \end{eqnarray} $

$\begin{eqnarray}\label{lattice1-6} {\beta}_{n_i}^{(i)}(q^{2m}, q^2)=\sum\limits_{{n_{k}\leq n_{k-1}\leq\cdots\leq n_{i}}} \frac{q^{2(n^{2}_{i+1}+\cdots+n^{2}_{k})+2m(n_{i+1}+\cdots+n_{k})}}{(q^2;q^2)_{n_{i}-n_{i+1}}\cdots(q^2;q^2)_{n_{k-1}-n_{k}}} {\beta}_{n_{k}}^{(k)}(q^{2m}, q^2). \end{eqnarray} $

联立等式(3.2)-(3.7),有

$\begin{eqnarray}\label{lattice1-7} {\alpha}_n^{(0)}(q^{m}, q)=q^{(2k+2i-2)n^2+(2k+2i-2)mn}{\alpha}_n^{(k)}(q^{2m}, q^2), \end{eqnarray}$

$ \begin{eqnarray} &&{\beta}_n^{(0)}(q^m, q)\nonumber\\&=&\sum\limits_{{n_{k}\leq n_{k-1}\leq\cdots\leq n_1\leq n}} \frac{q^{4(n^{2}_1+\cdots+n^{2}_{i-1})+2(n^{2}_{i}+\cdots+n^{2}_{k})+4m(n_1+\cdots+n_{i-1})+2m(n_{i}+\cdots+n_{k})}} {(q^4;q^4)_{n-n_{1}}\cdots(q^4;q^4)_{n_{i-1}-n_{i}}(q^2;q^2)_{n_{i}-n_{i+1}}\cdots(q^2;q^2)_{n_{k-1}-n_{k}}} \nonumber\\\label{lattice1-8} &&\times\frac{1}{(-q^{2+2m};q^2)_{2n_{i-1}}}{\beta}_{n_{k}}^{(k)}(q^{2m}, q^2). \end{eqnarray} $

将移位Bailey对(1.7)和(1.8)式代入(3.8)-(3.9)式中,然后将得到的移位Bailey对代入等式(1.4),并将(1.4)式中的$a$替换成$q^{4m}$, $q$替换成$q^4$,最后令$n\rightarrow\infty$, $q \rightarrow q^{1/2}$,定理得证.

推论3.1[9,定理2.3]  对所有的$k\in{\Bbb N^{*}}$$m\in{\Bbb N}$,我们有

$\begin{eqnarray}&&\sum\limits_{{-\lfloor m/2 \rfloor\leq n_k\leq n_{k-1}\leq\cdots \leq n_1}}\frac{q^{n^{2}_{1}+\cdots+{n^{2}_k}+m(n_1+\cdots+n_k)}}{(q)_{n_1-n_2}\cdots(q)_{n_{k-1}-n_k}}(-1)^{n_{k}}q^{n_{k}\choose2}\left[{m+n_{k}\atop m+2n_{k}}\right]_q\nonumber\\\label{3-2}&=&\frac{(q^{2k+1}, q^{k(m+1)}, q^{k(1-m)+1};q^{2k+1})_\infty}{(q)_{\infty}}.\end{eqnarray}$

  在定理3.1中令$i=1, n_0 \rightarrow\infty$.

注3.1  在推论3.1中令$m=0$,则对所有的$k\in{\Bbb N^{*}}$,我们有

该恒等式是文献[2,定理1] $i=k$时的另一种表达形式.

推论3.2[9,推论2.5]  对所有的$m\in{\Bbb N}$,有

$\begin{eqnarray}\label{3-5}\sum\limits_{j=0}^{\lfloor m/2 \rfloor}(-1)^{j}q^{{j\choose 2}}\left[{m-j\atop j}\right]_{q}=\left\{ \begin{array}{ll} 0, & \hbox{if $m\equiv2$ (mod 3), } \\ (-1)^{\lfloor m/3 \rfloor}q^{m(m-1)/6}, & \hbox{if $m \not\equiv2$ (mod 3).} \end{array} \right.\end{eqnarray}$

  在推论3.1中令$k=1$.

推论3.3[9,推论2.7]  对所有的$m\in{\Bbb N}$,有

$\begin{eqnarray}\label{3-6}\sum\limits_{{j\geq 0}}(-1)^{j}q^{5{j\choose2}-(2m-3)j}\left[{m-j\atop j}\right]_{q}\sum\limits_{{k\geq 0}}\frac{q^{{k^2}+(m-2j)k}}{(q;q)_k}=\frac{(q^5, q^{2+2m}, q^{3-2m};q^5)_\infty}{(q;q)_\infty}.\end{eqnarray}$

  在推论3.1中令$k=2$.

注3.2  等式(3.12)是第一Rogers-Ramanujan恒等式

$m$-等价形式.

推论3.4  对所有的$m\in{\Bbb N}$,有

$\begin{equation}\label{3-8}\sum\limits_{{-\lfloor m/2 \rfloor\leq n_3\leq n_{2}\leq n_1}}\frac{q^{n^{2}_{1}+{n^{2}_{2}}+{n^{2}_3}+m(n_1+n_2+n_3)}}{(q)_{n_1-n_2}(q)_{n_2-n_3}}(-1)^{n_{3}}q^{n_{3}\choose2}\left[{m+n_{3}\atop m+2n_{3}}\right]_q=\frac{(q^{7}, q^{3m+3}, q^{4-3m};q^{7})_\infty}{(q)_{\infty}}.\end{equation}$

  在推论3.1中令$k=3$.

在(3.13)式中,当$m=0$时,令$n_1\rightarrow m$, $n_2\rightarrow n$,则有(参见文献[2, p.4083, (1.8)])

推论3.5  对所有的$m\in{\Bbb N}$,有

$\begin{eqnarray}\label{3-11}&&\sum\limits_{{-\lfloor m/2 \rfloor\leq n_4\leq n_3\leq n_{2}\leq n_1}}\frac{q^{n^{2}_{1}+{n^{2}_{2}}+{n^{2}_3}+{n^{2}_4}+m(n_1+n_2+n_3+n_4)}}{(q)_{n_1-n_2}(q)_{n_2-n_3}(q)_{n_3-n_4}}(-1)^{n_{4}}q^{n_{4}\choose2}\left[{m+n_{4}\atop m+2n_{4}}\right]_q\nonumber\\&=&\frac{(q^{9}, q^{4m+4}, q^{5-4m};q^{9})_\infty}{(q)_{\infty}}.\end{eqnarray}$

  在推论3.1中令$k=4$.

在(3.14)式中,当$m=0$时,令$n_1\rightarrow m$, $n_2\rightarrow n$, $n_3\rightarrow k$,则有

推论3.6  对所有的$k\in{\Bbb N^{*}}$$m\in{\Bbb N}$,我们有

$\begin{eqnarray}&&\sum\limits_{{-\lfloor m/2 \rfloor\leq n_k\leq n_{k-1}\leq\cdots \leq n_1}}\frac{q^{2{n^{2}_{1}}+n^{2}_{2}+\cdots+{n^{2}_k}+m(2{n_1}+n_2+\cdots+n_k)}(-1)^{n_{k}}q^{n_{k}\choose2}}{(q^2;q^2)_{n_1-n_2}(q)_{n_2-n_3}\cdots(q)_{n_{k-1}-n_k}(-q;q)_{2n_{1}+m}}\left[{m+n_{k}\atop m+2n_{k}}\right]_q\nonumber\\&=&\frac{(q^{2k+3}, q^{(k+1)(m+1)}, q^{(k+1)(1-m)+1};q^{2k+3})_\infty}{(q^2;q^2)_{\infty}}.\end{eqnarray}$

  在定理3.1中令$i=2$.

推论3.7  对所有的$m\in{\Bbb N}$,有

$\begin{eqnarray}\label{3-7}&&\sum\limits_{{j\geq 0}}\frac{(-1)^{j}q^{7{j\choose2}-(3m-4)j}}{(-q;q)_{m-2j}}\left[{m-j\atop j}\right]_{q}\sum\limits_{{k\geq 0}}\frac{q^{2{k^2}+2(m-2j)k}}{(q;q)_k(-q^{1+m-2j};q)_{2k}}\nonumber\\&=&\frac{(q^7, q^{3+3m}, q^{4-3m};q^7)_\infty}{(q^2;q^2)_\infty}.\end{eqnarray}$

  在推论3.6中令$k=2$.

在(3.16)式中,当$m=0$时,令$n_1\rightarrow k$,则有

推论3.8  对所有的$m\in{\Bbb N}$,我们有

$\begin{eqnarray}\label{3-9}&&\sum\limits_{{-\lfloor m/2 \rfloor\leq n_3\leq n_{2}\leq n_1}}\frac{q^{2{n^{2}_{1}}+{n^{2}_{2}}+{n^{2}_3}+m(2{n_1}+n_2+n_3)}(-1)^{n_{3}}q^{n_{3}\choose2}}{(q^2;q^2)_{n_1-n_2}(q)_{n_2-n_3}(-q)_{2{n_1}+m}}\left[{m+n_{3}\atop m+2n_{3}}\right]_q\nonumber\\&=&\frac{(q^{9}, q^{4m+4}, q^{5-4m};q^{9})_\infty}{(q^2;q^2)_{\infty}}.\end{eqnarray}$

  在推论3.6中令$k=3$.

在(3.17)式中,当$m=0$时,令$n_1\rightarrow m$, $n_2\rightarrow n$,则有

推论3.9  对所有的$m\in{\Bbb N}$,有

$\begin{eqnarray}\label{3-12}&&\sum\limits_{{-\lfloor m/2 \rfloor\leq n_4\leq n_3\leq n_{2}\leq n_1}}\frac{q^{2{n^{2}_{1}}+{n^{2}_{2}}+{n^{2}_3}+{n^{2}_4}+m(2{n_1}+n_2+n_3+n_4)}}{(q^2;q^2)_{n_1-n_2}(q)_{n_2-n_3}(q)_{n_3-n_4}(-q)_{2{n_1+m}}}(-1)^{n_{4}}q^{n_{4}\choose2}\left[{m+n_{4}\atop m+2n_{4}}\right]_q\nonumber\\&=&\frac{(q^{11}, q^{5m+5}, q^{6-5m};q^{11})_\infty}{(q^2;q^2)_{\infty}}.\end{eqnarray}$

  在推论3.6中令$k=4$.

在(3.18)式中,当$m=0$时,令$n_1\rightarrow m$, $n_2\rightarrow n$, $n_3\rightarrow k$,则有

推论3.10  对所有的$k\in{\Bbb N^{*}}$$m\in{\Bbb N}$,我们有

$\begin{eqnarray}\label{3-4}&&\sum\limits_{{-\lfloor m/2 \rfloor\leq n_k\leq n_{k-1}\leq\cdots \leq n_1}}\frac{q^{{2{n^{2}_1}}+{2{n^{2}_2}}+{{n^{2}_3}}+\cdots+{{n^{2}_k}}+m(2{n_1}+2{n_2}+n_3+\cdots+n_k)}}{(q^2;q^2)_{n_1-n_2}\cdots(q^2;q^2)_{n_2-n_3}(q)_{n_3-n_4}\cdots(q)_{n_{k-1}-n_k}(-q;q)_{2{n_2}+m}}\nonumber\\&&\times(-1)^{n_{k}}q^{n_{k}\choose2}\left[{m+n_{k}\atop m+2n_{k}}\right]_q\nonumber\\&=&\frac{(q^{2k+5}, q^{(k+2)(m+1)}, q^{(k+2)(1-m)+1};q^{2k+5})_\infty}{(q^2;q^2)_{\infty}}.\end{eqnarray}$

  在定理3.1中令$i=3$.

推论3.11  对所有的$m\in{\Bbb N}$,有

$\begin{eqnarray}\label{3-10}&&\sum\limits_{{-\lfloor m/2 \rfloor\leq n_3\leq n_{2}\leq n_1}}\frac{q^{2{n^{2}_1}+2{n^{2}_2}+{n^{2}_3}+m(2{n_1}+2{n_2}+n_3)}(-1)^{n_{3}}q^{n_{3}\choose2}}{(q^2;q^2)_{n_1-n_2}(q^2;q^2)_{n_2-n_3}(-q)_{2{n_2}+m}}\left[{m+n_{3}\atop m+2n_{3}}\right]_q\nonumber\\&=&\frac{(q^{11}, q^{5m+5}, q^{6-5m};q^{11})_\infty}{(q^2;q^2)_{\infty}}\end{eqnarray}$

  在推论3.10中令$k=3$.

在(3.20)式中,当$m=0$时,令$n_1\rightarrow m$, $n_2\rightarrow n$,则有

推论3.12  对所有的$m\in{\Bbb N}$,有

$\begin{eqnarray}\label{3-13}&&\sum\limits_{{-\lfloor m/2 \rfloor\leq n_4\leq n_3\leq n_{2}\leq n_1}}\frac{q^{2{n^{2}_{1}}+2{n^{2}_{2}}+{n^{2}_3}+{n^{2}_4}+m(2{n_1}+2{n_2}+n_3+n_4)}}{(q^2;q^2)_{n_1-n_2}(q^2;q^2)_{n_2-n_3}(q)_{n_3-n_4}(-q)_{2{n_2+m}}}(-1)^{n_{4}}q^{n_{4}\choose2}\left[{m+n_{4}\atop m+2n_{4}}\right]_q\nonumber\\&=&\frac{(q^{13}, q^{6m+6}, q^{7-6m};q^{13})_\infty}{(q^2;q^2)_{\infty}}.\end{eqnarray}$

  在推论3.10中令$k=4$.

在(3.21)式中,当$m=0$时,令$n_1\rightarrow m$, $n_2\rightarrow n$, $n_3\rightarrow k$,则有

推论3.13  对所有的$m\in{\Bbb N}$,有

$\begin{eqnarray}\label{3-14}&&\sum\limits_{{-\lfloor m/2 \rfloor\leq n_4\leq n_3\leq n_{2}\leq n_1}}\frac{q^{2{n^{2}_{1}}+2{n^{2}_{2}}+2{n^{2}_3}+{n^{2}_4}+m(2{n_1}+2{n_2}+2{n_3}+n_4)}}{(q^2;q^2)_{n_1-n_2}(q^2;q^2)_{n_2-n_3}(q^2;q^2)_{n_3-n_4}(-q)_{2{n_3+m}}}\nonumber\\&&\times (-1)^{n_{4}}q^{n_{4}\choose2}\left[{m+n_{4}\atop m+2n_{4}}\right]_q\nonumber\\&=&\frac{(q^{15}, q^{7m+7}, q^{8-7m};q^{15})_\infty}{(q^2;q^2)_{\infty}}.\end{eqnarray}$

  在定理3.1中令$k=4, i=4$.

在(3.22)式中,当$m=0$时,令$n_1\rightarrow m$, $n_2\rightarrow n$, $n_3\rightarrow k$,则有

定理3.2  对所有$k\in{\Bbb N^{*}}$, $m\in{\Bbb N}$$2\leq i\leq k$,我们有

$\begin{eqnarray}\label{3-15}&&\sum\limits_{{-\lfloor m/2 \rfloor\leq n_k\leq n_{k-1}\leq\cdots \leq n_1}}\frac{q^{2{n^{2}_1}+\cdots+2{n^{2}_{i-2}}+3{n^{2}_{i-1}}+{{n^{2}_i}}+\cdots+{{n^{2}_k}}+m(2{n_1}+\cdots+2{n_{i-1}}+n_{i+1}+\cdots+n_k)-2{n_{i-1}n_{i}}}}{(q^2;q^2)_{n_1-n_2}\cdots(q^2;q^2)_{n_{i-1}-n_{i}}(q)_{n_{i}-n_{i+1}}\cdots(q)_{n_{k-1}-n_k}}\nonumber\\&&\times\frac{(-1)^{n_{i-1}-n_i}}{(-q;q)_{2{n_{i-1}}+m}}(-1)^{n_{k}}q^{n_{k}\choose2}\left[{m+n_{k}\atop m+2n_{k}}\right]_q\nonumber\\&=&\frac{(q^{2k+2i-3}, q^{(k+i-2)(m+1)}, q^{(k+i-2)(1-m)+1};q^{2k+2i-3})_\infty}{(q^2;q^2)_{\infty}}.\end{eqnarray}$

  若Bailey链表示如下

其中${\alpha}^{(j)}={\alpha}_n^{(j)}, {\beta}^{(j)}={\beta}_n^{(j)}$.迭代(S1) $i-1$($i\geq1$)次,并且将其中的$a$替换成$q^{4m}$,则有

$\begin{eqnarray}\label{lattice2-1} {\alpha}_n^{(0)}(q^{m}, q)=q^{4(i-1)n^2+4(i-1)mn}{\alpha}_n^{(i-1)}(q^m, q), \end{eqnarray} $

$\begin{eqnarray}\label{lattice2-2} {\beta}_n^{(0)}(q^m, q)=\sum\limits_{{n_{i-1}\leq n_{i-2}\leq\cdots\leq n_1\leq n}} \frac{q^{4(n^{2}_1+\cdots+n^{2}_{i-1})+4m(n_1+\cdots+n_{i-1})}}{(q^4;q^4)_{n-n_{1}}\cdots(q^4;q^4)_{n_{i-2}-n_{i-1}}} {\beta}_{n_{i-1}}^{(i-1)}(q^m, q). \end{eqnarray}$

应用(S3),可以得到

$\begin{eqnarray}\label{lattice2-3} {\alpha}_n^{(i-1)}(q^{m}, q)={\alpha}_n^{(i)}(q^{2m}, q^2), \end{eqnarray} $

$\begin{eqnarray}\label{lattice2-4} {\beta}_{n_{i-1}}^{(i-1)}(q^m, q)=\sum\limits_{{n_{i}\leq n_{i-1}}} \frac{(-1)^{n_{i-1}-n_{i}}q^{2{n^{2}_{i-1}}+2{n^{2}_{i}}-4{n_{i-1}{n_i}}}}{(q^4;q^4)_{n_{i-1}-n_{i}}(-q^{2+2m};q^2)_{2n_{i-1}}} {\beta}_{n_{i}}^{(i)}(q^{2m}, q^2). \end{eqnarray}$

然后应用(S1) $k-i$次,并且令$q \rightarrow q^2$,则有

$\begin{eqnarray}\label{lattice2-5} {\alpha}_n^{(i)}(q^{2m}, q^2)=q^{2(k-i)n^2+2(k-i)mn}{\alpha}_n^{(k)}(q^{2m}, q^2), \end{eqnarray} $

$\begin{eqnarray}\label{lattice2-6} {\beta}_{n_i}^{(i)}(q^{2m}, q^2)=\sum\limits_{{n_{k}\leq n_{k-1}\leq\cdots\leq n_{i}}} \frac{q^{2(n^{2}_{i+1}+\cdots+n^{2}_{k})+2m(n_{i+1}+\cdots+n_{k})}}{(q^2;q^2)_{n_{i}-n_{i+1}}\cdots(q^2;q^2)_{n_{k-1}-n_{k}}} {\beta}_{n_{k}}^{(k)}(q^{2m}, q^2). \end{eqnarray} $

联立等式(3.24)-(3.29)式,有

$\begin{eqnarray}\label{lattice2-7} {\alpha}_n^{(0)}(q^{m}, q)=q^{(2k+2i-4)n^2+(2k+2i-4)mn}{\alpha}_n^{(k)}(q^{2m}, q^2), \end{eqnarray} $

$\begin{eqnarray}\label{lattice2-8} &&{\beta}_n^{(0)}(q^m, q)\nonumber\\&=&\sum\limits_{{n_{k}\leq n_{k-1}\leq\cdots\leq n_1\leq n}} \frac{q^{4(n^{2}_1+\cdots+n^{2}_{i-2})+6{n^{2}_{i-1}}+2(n^{2}_{i}+\cdots+n^{2}_{k})+4m(n_1+\cdots+n_{i-1})+2m(n_{i+1}+\cdots+n_{k})}} {(q^4;q^4)_{n-n_{1}}\cdots(q^4;q^4)_{n_{i-1}-n_{i}}(q^2;q^2)_{n_{i}-n_{i+1}}\cdots(q^2;q^2)_{n_{k-1}-n_{k}}}\nonumber\\ &&\times\frac{(-1)^{n_{i-1}-n_{i}}q^{-4{n_{i-1}{n_i}}}}{(-q^{2+2m};q^2)_{2n_{i-1}}}{\beta}_{n_{k}}^{(k)}(q^{2m}, q^2). \end{eqnarray}$

将(1.7)和(1.8)式代入(3.30)-(3.31)式中,然后将得到的移位Bailey对代入等式(1.4),并且将等式(1.4)中的$a$替换成$q^{4m}$, $q$替换成$q^4$,最后令$n\rightarrow\infty$, $q \rightarrow q^{1/2}$.定理得证.

推论3.14  对所有的$k\in{\Bbb N^{*}}$$m\in{\Bbb N}$,有

$\begin{eqnarray}\label{3-16}&&\sum\limits_{{-\lfloor m/2 \rfloor\leq n_k\leq n_{k-1}\leq\cdots \leq n_1}}\frac{(-1)^{n_1-n_2+n_k}q^{3{n^{2}_{1}}+{{n^{2}_2}}+\cdots+{{n^{2}_k}}+m(2{n_1}+n_2+\cdots+n_k)-2{n_1n_2}}}{(q^2;q^2)_{n_1-n_2}(q)_{n_{2}-n_3}\cdots(q)_{n_{k-1}-n_k}(-q;q)_{2{n_1}+m}}\nonumber\\&&\times q^{n_{k}\choose2}\left[{m+n_{k}\atop m+2n_{k}}\right]_q\nonumber\\&=&\frac{(q^{2k+1}, q^{k(m+1)}, q^{k(1-m)+1};q^{2k+1})_\infty}{(q^2;q^2)_{\infty}}.\end{eqnarray}$

  在定理3.2中令$i=2$.

推论3.15  对所有的$m\in{\Bbb N}$,有

$\begin{eqnarray}\label{3-18}&&\sum\limits_{{-\lfloor m/2 \rfloor\leq n_2\leq n_1}}\frac{(-1)^{n_1}q^{3{n^{2}_{1}}+{n^{2}_2}+m(2{n_1}+n_2)-2{n_1n_2}}}{(q^2;q^2)_{n_1-n_2}(-q;q)_{2{n_1}+m}}q^{n_{2}\choose2}\left[{m+n_{2}\atop m+2n_{2}}\right]_q\nonumber\\&=&\frac{(q^{5}, q^{2m+2}, q^{3-2m};q^{5})_\infty}{(q^2;q^2)_{\infty}}.\end{eqnarray}$

  在推论3.14中令$k=2$.

在(3.33)式中,当$m=0$时,令$n_1\rightarrow m$,则有

推论3.16  对所有的$m\in{\Bbb N}$,有

$\begin{eqnarray}\label{3-19}&&\sum\limits_{{-\lfloor m/2 \rfloor\leq n_3\leq n_2\leq n_1}}\frac{(-1)^{n_1-n_2+n_3}q^{3{n^{2}_{1}}+{n^{2}_2}+{n^{2}_3}+m(2{n_1}+n_2+n_3)-2{n_1n_2}}}{(q^2;q^2)_{n_1-n_2}(q)_{n_{2}-n_3}(-q;q)_{2{n_1}+m}}q^{n_{3}\choose2}\left[{m+n_{3}\atop m+2n_{3}}\right]_q\nonumber\\&=&\frac{(q^{7}, q^{3m+3}, q^{4-3m};q^{7})_\infty}{(q^2;q^2)_{\infty}}.\end{eqnarray}$

  在推论3.14中令$k=3$.

在(3.34)式中,当$m=0$时,令$n_1\rightarrow m$, $n_2\rightarrow n$,则有

推论3.17  对所有的$m\in{\Bbb N}$,有

$\begin{eqnarray}\label{3-21}&&\sum\limits_{{-\lfloor m/2 \rfloor\leq n_4\leq n_3\leq n_2\leq n_1}}\frac{(-1)^{n_1-n_2+n_4}q^{3{n^{2}_{1}}+{{n^{2}_2}}+{n^{2}_3}+{n^{2}_4}+m(2{n_1}+n_2+n_3+n_4)-2{n_1n_2}}}{(q^2;q^2)_{n_1-n_2}(q)_{n_{2}-n_3}(q)_{n_3-n_4}(-q;q)_{2{n_1}+m}}q^{n_{4}\choose2}\left[{m+n_{4}\atop m+2n_{4}}\right]_q\nonumber\\&=&\frac{(q^{9}, q^{4m+4}, q^{5-4m};q^{9})_\infty}{(q^2;q^2)_{\infty}}.\end{eqnarray}$

  在推论3.14中令$k=4$.

在(3.35)式中,当$m=0$时,令$n_1\rightarrow m$, $n_2\rightarrow n$, $n_3\rightarrow k$,则有

推论3.18  对所有的$k\in{\Bbb N^{*}}$$m\in{\Bbb N}$,有

$\begin{eqnarray}\label{3-17}&&\sum\limits_{{-\lfloor m/2 \rfloor\leq n_k\leq n_{k-1}\leq\cdots \leq n_1}}\frac{(-1)^{n_2-n_3}q^{2{n^{2}_1}+3{n^{2}_{2}}+{{n^{2}_3}}+\cdots+{{n^{2}_k}}+m(2{n_1}+2{n_2}+n_4+\cdots+n_k)-2{n_2n_3}}}{(q^2;q^2)_{n_1-n_2}(q^2;q^2)_{n_2-n_3}(q)_{n_{3}-n_{4}}\cdots(q)_{n_{k-1}-n_k}(-q;q)_{2{n_2}+m}}\nonumber\\&&\times(-1)^{n_{k}}q^{n_{k}\choose2}\left[{m+n_{k}\atop m+2n_{k}}\right]_q\nonumber\\&=&\frac{(q^{2k+3}, q^{(k+1)(m+1)}, q^{(k+1)(1-m)+1};q^{2k+3})_\infty}{(q^2;q^2)_{\infty}}.\end{eqnarray}$

  在定理3.2中令$i=3$.

推论3.19  对所有的$m\in{\Bbb N}$,有

$\begin{eqnarray}\label{3-20}&&\sum\limits_{{-\lfloor m/2 \rfloor\leq n_3\leq n_2\leq n_1}}\frac{(-1)^{n_2}q^{2{n^{2}_1}+3{n^{2}_{2}}+{n^{2}_3}+m(2{n_1}+2{n_2})-2{n_2n_3}}}{(q^2;q^2)_{n_1-n_2}(q^2;q^2)_{n_2-n_3}(-q;q)_{2{n_2}+m}}q^{n_{3}\choose2}\left[{m+n_{3}\atop m+2n_{3}}\right]_q\nonumber\\&=&\frac{(q^{9}, q^{4m+4}, q^{5-4m};q^{9})_\infty}{(q^2;q^2)_{\infty}}.\end{eqnarray}$

  在推论3.18中令$k=3$.

在(3.37)式中,当$m=0$时,令$n_1\rightarrow m$, $n_2\rightarrow n$,则有

推论3.20  对所有的$m\in{\Bbb N}$,有

$\begin{eqnarray}\label{3-22}&&\sum\limits_{{-\lfloor m/2 \rfloor\leq n_4\leq n_3\leq\ n_2\leq n_1}}\frac{(-1)^{n_2-n_3+n_4}q^{2{n^{2}_1}+3{n^{2}_{2}}+{{n^{2}_3}}+{n^{2}_k}+m(2{n_1}+2{n_2}+n_4)-2{n_2n_3}}}{(q^2;q^2)_{n_1-n_2}(q^2;q^2)_{n_2-n_3}(q)_{n_{3}-n_{4}}(-q;q)_{2{n_2}+m}}q^{n_{4}\choose2}\left[{m+n_{4}\atop m+2n_{4}}\right]_q\nonumber\\&=&\frac{(q^{11}, q^{5(m+1)}, q^{6-6m};q^{11})_\infty}{(q^2;q^2)_{\infty}}.\end{eqnarray}$

  在推论3.18中令$k=4$.

在(3.38)式中,当$m=0$时,令$n_1\rightarrow m$, $n_2\rightarrow n$, $n_3\rightarrow k$,则有

推论3.21  对所有的$k\in{\Bbb N^{*}}$, $m\in{\Bbb N}$$1\leq i\leq k$,我们有

$\begin{eqnarray}\label{3-23}&&\sum\limits_{{-\lfloor m/2 \rfloor\leq n_4\leq n_3\leq n_2\leq n_1}}\frac{(-1)^{n_3}q^{2{n^{2}_1}+2{n^{2}_2}+3{n^{2}_3}+{n^{2}_4}+m(2{n_1}+2{n_2}+2{n_3})-2{n_3n_4}}}{(q^2;q^2)_{n_1-n_2}(q^2;q^2)_{n_2-n_3}(q^2;q^2)_{n_3-n_4}(-q;q)_{2{n_3}+m}}q^{n_{4}\choose2}\left[{m+n_{4}\atop m+2n_{4}}\right]_q\nonumber\\&=&\frac{(q^{13}, q^{6m+6}, q^{7-6m};q^{13})_\infty}{(q^2;q^2)_{\infty}}.\end{eqnarray}$

  在定理3.2中令$k=4, i=4$.

在(3.39)式中,当$m=0$时,令$n_1\rightarrow m$, $n_2\rightarrow n$, $n_3\rightarrow k$,则有

定理3.3  对所有的$k\in{\Bbb N^{*}}$, $m\in{\Bbb N}$$1\leq i\leq k$,我们有

$\begin{eqnarray}\label{3-24}&&\sum\limits_{{-\lfloor m/2 \rfloor\leq n_k\leq n_{k-1}\leq\cdots \leq n_1}}\frac{q^{{3{n^{2}_1}}+\cdots+{3{n^{2}_{i-1}}}+{{n^{2}_i}}+\cdots+{{n^{2}_k}}+m(3{n_1}+\cdots+3{n_{i-1}}+n_i+\cdots+n_k)}}{(q^3;q^3)_{n_1-n_2}\cdots(q^3;q^3)_{n_{i-1}-n_{i}}(q)_{n_{i}-n_{i+1}}\cdots(q)_{n_{k-1}-n_k}}\nonumber\\&&\times\frac{(q;q)_{3{n_{i-1}}-n_i+m}}{(q^3;q^3)_{2{n_{i-1}}+m}}(-1)^{n_{k}}q^{n_{k}\choose2}\left[{m+n_{k}\atop m+2n_{k}}\right]_q\nonumber\\&=&\frac{(q^{2k+4i-3}, q^{(k+2i-2)(m+1)}, q^{(k+2i-2)(1-m)+1};q^{2k+4i-3})_\infty}{(q^3;q^3)_{\infty}}.\end{eqnarray}$

  若Bailey链表示如下

其中${\alpha}^{(j)}={\alpha}_n^{(j)}, {\beta}^{(j)}={\beta}_n^{(j)}$.迭代(S1) $i-1$($i\geq1$)次,并且将$a$替换成$q^{4m}$,则有

$\begin{eqnarray}\label{lattice3-1}{\alpha}_n^{(0)}(q^{m}, q)=q^{3(i-1)n^2+3(i-1)mn}{\alpha}_n^{(i-1)}(q^m, q), \end{eqnarray} $

$\begin{eqnarray}\label{lattice3-2} {\beta}_n^{(0)}(q^m, q)=\sum\limits_{{n_{i-1}\leq n_{i-2}\leq\cdots\leq n_1\leq n}} \frac{q^{3(n^{2}_1+\cdots+n^{2}_{i-1})+3m(n_1+\cdots+n_{i-1})}}{(q^3;q^3)_{n-n_{1}}\cdots(q^3;q^3)_{n_{i-2}-n_{i-1}}} {\beta}_{n_{i-1}}^{(i-1)}(q^m, q). \end{eqnarray} $

应用定理2.2,可以得到

$ \begin{eqnarray}\label{lattice3-3} {\alpha}_n^{(i-1)}(q^{m}, q)=q^{n^2+mn}{\alpha}_n^{(i)}(q^{m}, q), \end{eqnarray} $

$\begin{eqnarray}\label{lattice3-4} {\beta}_{n_{i-1}}^{(i-1)}(q^m, q)=\sum\limits_{{n_{i}\leq n_{i-1}}} \frac{q^{n^{2}_{i}+mn_{i}}}{(q^3;q^3)_{n_{i-1}-n_{i}}(q^{3+3m};q^3)_{2n_{i-1}}} {\beta}_{n_{i}}^{(i)}(q^{m}, q). \end{eqnarray}$

然后,应用(S1)$k-i$次,则有

$\begin{eqnarray}\label{lattice3-5} {\alpha}_n^{(i)}(q^{m}, q)=q^{(k-i)n^2+(k-i)mn}{\alpha}_n^{(k)}(q^{m}, q), \end{eqnarray} $

$\begin{eqnarray}\label{lattice3-6} {\beta}_{n_i}^{(i)}(q^{m}, q)=\sum\limits_{{n_{k}\leq n_{k-1}\leq\cdots\leq n_{i}}} \frac{q^{(n^{2}_{i+1}+\cdots+n^{2}_{k})+m(n_{i+1}+\cdots+n_{k})}}{(q;q)_{n_{i}-n_{i+1}}\cdots(q;q)_{n_{k-1}-n_{k}}} {\beta}_{n_{k}}^{(k)}(q^{m}, q). \end{eqnarray} $

联立等式(3.41)-(3.46),有

$\begin{eqnarray}\label{lattice3-7} {\alpha}_n^{(0)}(q^m, q)=q^{(k+2i-2)n^2+(k+2i-2)mn}{\alpha}_n(q^m, q), \end{eqnarray}$

$ \begin{eqnarray} &&{\beta}_n^{(0)}(q^m, q)\nonumber\\&=&\sum\limits_{{-\lfloor m/2 \rfloor\leq n_k\leq n_{k-1}\leq\cdots \leq n_1\leq n}} \frac{q^{{3({n} ^{2}_1}+\cdots+{{n^{2}_{i-1}})}+({{n^{2}_i}+\cdots+{{n^{2}_k}})+3m(n_1+\cdots+n_{i-1})+m(n_i+\cdots+n_k)}}} {(q^3;q^3)_{n-n_1}\cdots(q^3;q^3)_{n_{i-1}-n_{i}}(q)_{n_{i}-n_{i+1}}\cdots(q)_{n_{k-1}-n_k}} \nonumber\\\label{lattice3-8} &&\times\frac{1}{(q^{3+3m};q^3)_{2n_{i-1}}}{\beta}_{n_{k}}^{(k)}(q^{m}, q). \end{eqnarray}$

将(1.7)和(1.8)式代入$(3.47)$-$(3.48)$式中,然后将得到的Bailey对代入等式(1.4),并将(1.4)式中的$a$替换成$q^{3m}$, $q$替换成$q^3$,最后令$n\rightarrow\infty$.定理得证.

注3.3  在定理3.3中令$i=1, n\rightarrow\infty$,可以得到推论3.2;在定理3.3中分别令$k=1, $$i=1$; $k=2, $$i=1$$k=3, i=1$,可以得到恒等式(3.11), (3.12)和(3.13).

推论3.22  对所有的$k\in{\Bbb N^{*}}$$m\in{\Bbb N}$,我们有

$\begin{eqnarray}\label{3-25}&&\sum\limits_{{-\lfloor m/2 \rfloor\leq n_k\leq n_{k-1}\leq\cdots \leq n_1}}\frac{q^{3{n^{2}_{1}}+n^{2}_{2}+\cdots+{n^{2}_k}+m(3{n_1}+n_2+\cdots+n_k)}(q;q)_{3{n_1}-n_2+m}}{(q^3;q^3)_{n_1-n_2}(q)_{n_2-n_3}\cdots(q)_{n_{k-1}-n_k}(q^3;q^3)_{2{n_1}+m}}\nonumber\\&&\times (-1)^{n_{k}}q^{n_{k}\choose2}\left[{m+n_{k}\atop m+2n_{k}}\right]_q\nonumber\\&=&\frac{(q^{2k+5}, q^{(k+2)(m+1)}, q^{(k+2)(1-m)+1};q^{2k+5})_\infty}{(q^3;q^3)_{\infty}}.\end{eqnarray}$

  在定理3.3中令$i=2$.

推论3.23  对所有的$m\in{\Bbb N}$,有

$\begin{eqnarray}\label{3-27}&&\sum\limits_{{j\geq 0}}\frac{(-1)^{j}q^{8{j\choose2}-(4m-4)j}(q;q)_{m-2j}}{(q^3;q^3)_{m-2j}}\left[{m-j\atop j}\right]_{q}\sum\limits_{{k\geq 0}}\frac{q^{3{k^2}+3(m-2j)k}(q^{m-2j+1};q)_{3k}}{(q^3;q^3)_k(q^{3+3m-6j};q^3)_{2k}}\nonumber\\&=&\frac{(q^9, q^{4+4m}, q^{5-4m};q^9)_\infty}{(q^3;q^3)_\infty}.\end{eqnarray}$

  在推论3.22中令$k=2$.

在(3.50)式中,当$m=0$时,令$n_1\rightarrow k$,则有

推论3.24  对所有的$m\in{\Bbb N}$,有

$\begin{eqnarray}\label{3-28}&&\sum\limits_{{-\lfloor m/2 \rfloor\leq n_3\leq n_{2}\leq n_1}}\frac{q^{3{n^{2}_{1}}+n^{2}_{2}+{n^{2}_3}+m(3{n_1}+n_2+n_3)}(q;q)_{3{n_1}-n_2+m}}{(q^3;q^3)_{n_1-n_2}(q)_{n_2-n_3}(q^3;q^3)_{2{n_1}+m}}(-1)^{n_{3}}q^{n_{3}\choose2}\left[{m+n_{3}\atop m+2n_{3}}\right]_q\nonumber\\&=&\frac{(q^{11}, q^{5+5m}, q^{6-5m};q^{11})_\infty}{(q^3;q^3)_{\infty}}.\end{eqnarray}$

  在推论3.22中令$k=3$.

在(3.51)式中,当$m=0$时,令$n_1\rightarrow m$, $n_2\rightarrow n$,则有

推论3.25  对所有的$k\in{\Bbb N^{*}}$$m\in{\Bbb N}$,我们有

$\begin{eqnarray}\label{3-26}&&\sum\limits_{{-\lfloor m/2 \rfloor\leq n_k\leq n_{k-1}\leq\cdots \leq n_1}}\frac{q^{3{n^{2}_{1}+3n^{2}_{2}}+n_3+\cdots+{n^{2}_k}+m(3{n_1}+3{n_2}+n_3+\cdots+n_k)}(q;q)_{3{n_2}-n_3+m}}{(q^3;q^3)_{n_1-n_2}(q^3;q^3)_{n_2-n_3}(q)_{n_3-n_4}\cdots(q)_{n_{k-1}-n_k}(q^3;q^3)_{2{n_2}+m}}\nonumber\\&&\times(-1)^{n_k}q^{n_{k}\choose2}\left[{m+n_{k}\atop m+2n_{k}}\right]_q\nonumber\\&=&\frac{(q^{2k+9}, q^{(k+4)(m+1)}, q^{(k+4)(1-m)+1};q^{2k+9})_\infty}{(q^3;q^3)_{\infty}}.\end{eqnarray}$

  在定理3.3中令$i=3$.

推论3.26  对所有的$m\in{\Bbb N}$,有

$\begin{eqnarray}\label{3-29}&&\sum\limits_{{-\lfloor m/2 \rfloor\leq n_3\leq n_2\leq n_1}}\frac{q^{3{n^{2}_{1}+3n^{2}_{2}}+n_3+m(3{n_1}+3{n_2}+n_3})(q;q)_{3{n_2}-n_3+m}}{(q^3;q^3)_{n_1-n_2}(q^3;q^3)_{n_2-n_3}(q^3;q^3)_{2{n_2}+m}}(-1)^{n_3}q^{n_{3}\choose2}\left[{m+n_{3}\atop m+2n_{3}}\right]_q\nonumber\\&=&\frac{(q^{15}, q^{7+7m}, q^{8-7m};q^{15})_\infty}{(q^3;q^3)_{\infty}}.\end{eqnarray}$

  在推论3.25中,令$k=3$.

在(3.53)式中,当$m=0$时,令$n_1\rightarrow m$, $n_2\rightarrow n$,则有[6, (4.27)]

参考文献

Agarwal A , Andrew G E , Bressoud D .

The Bailey lattice

J Indian Math Soc, 1987, 51: 57- 73

URL     [本文引用: 1]

Andrews G E .

An analytic generalization of the Rogers-Ramanujan identities for odd moduli

Proc National Academy of Science, USA, 1974, 71 (10): 4082- 4085

DOI:10.1073/pnas.71.10.4082      [本文引用: 3]

Andrews G E .

Multiple series Rogers-Ramanujan type identities

Pac J Math, 1984, 114: 267- 283

DOI:10.2140/pjm.1984.114.267      [本文引用: 1]

Andrews G E. q-Series:Their Development and Application in Analysis, Number Theory, Combinatorics, Physics and Computer Algebra. Providence, RI:Amer Math Soc, 1986

[本文引用: 1]

Andrews G E , Schilling A , Warnaar S O .

An A2 Bailey lemma and Rogers-Ramanujan-type identities

J Amer Math Soc, 1999, 12 (3): 677- 702

DOI:10.1090/S0894-0347-99-00297-0      [本文引用: 1]

Bailey W N .

Identities of the Rogers-Ramanujan type

Proc London Math Soc, 2002, 66: 529- 549

DOI:10.1112/S0024610702003617      [本文引用: 2]

Bressoud D , Ismail M , Stanton D .

Change of base in Bailey pairs

Ramanujan J, 2000, 4: 435- 453

DOI:10.1023/A:1009824218230      [本文引用: 3]

Berkovich A , McCoy B M , Schilling A .

N=2 supersymmetry and Bailey pairs

Physical A, 1996, 228: 33- 62

URL     [本文引用: 1]

Frederic J .

Shifted versions of the Bailey and WP-Poised Bailey lemmas

Ramnujan J, 2010, 23: 315- 333

DOI:10.1007/s11139-010-9282-x      [本文引用: 6]

Gasper G , Rahman M . Basic Hypergeometric Series. Cambridge: Cambridge University Press, 1990

[本文引用: 2]

Andrew V Sills .

On identities of the Rogers-Ramanujan type

Ramanujan J, 2006, 11: 403- 429

DOI:10.1007/s11139-006-8483-9     

Slater L J .

A new proof of Rogers's transformations of infinite series

Proc London Math Soc, 1951, 53 (2): 460- 475

[本文引用: 1]

Slater L J .

Further identities of the Rogers-Ramanujan type

Proc London Math Soc, 1952, 54: 147- 167

[本文引用: 1]

Watson G N .

A new proof of the Rogers-Ramanujan identities

J London Math Soc, 1929, 4: 4- 9

URL    

Chu W , Yan Q .

Jacobi's triple product identity and theta functions

Math Commun, 2011, 16: 191- 203

URL     [本文引用: 1]

朱军明, 张之正.

几个级数-乘积型恒等式与Dedekind Eta函数展开式

数学物理学报, 2015, 35A (1): 110- 117

URL     [本文引用: 1]

Zhu J M , Zhang Z Z .

Some series-product identities and expansions on Dedekind's Eta function

Acta Math Sci, 2015, 35A (1): 110- 117

URL     [本文引用: 1]

/