时间分数阶扩散方程线性三角形元的高精度分析
High Accuracy Analysis of Linear Triangular Element for Time Fractional Diffusion Equations
Received: 2018-02-28
Fund supported: |
|
该文基于线性三角形元和改进的
关键词:
In this paper, based on linear triangular element and improved
Keywords:
本文引用格式
史艳华, 张亚东, 王芬玲, 赵艳敏, 王萍莉.
Shi Yanhua, Zhang Yadong, Wang Fenling, Zhao Yanmin, Wang Pingli.
1 引言
含有分数阶导数的偏微分方程称为分数阶偏微分方程,它分为时间分数阶微分方程、空间分数阶微分方程和时空分数阶微分方程.对于时间分数阶微分方程,根据时间分数阶
本文主要考虑如下时间分数阶扩散方程
它常被用于描述运输中的反常扩散过程[16].这里
这里
超逼近和超收敛分析是提高有限元精度的重要分析技巧,已被广泛应用于整数阶偏微分方程的研究.如Poission方程[17],半线性伪双曲方程[18],抛物型积分微分方程[19],非线性的Sobolev方程[20],非线性的BBM方程[21].对于时间分数阶方程(1.1),文献[22]基于空间上的类Wilson元和时间上的
该文主要基于线性三角形元和改进的
2 全离散逼近格式和一些引理
不妨令
定义线性三角形有限元空间
其中
问题(1.1)式的变分形式是:求
设
其中
引入余项
问题(2.1)式的全离散逼近格式为:求
这里
且由文献[29]知,若
为了给出后面的误差分析,需要引入下列重要引理.
引理2.1[26] 设
引理2.2[23] 设
引理2.3[23] 设
3 逼近格式的稳定性、超逼近、超收敛分析
本节首先讨论了逼近格式的无条件稳定性.其次证明了关于Ritz投影算子的超逼近性质.再结合投影算子和插值算子的关系得到了关于插值算子的超逼近性质.最后借助插值后处理技巧,导出了超收敛结果.
先给出如下的稳定性结果.
定理3.1 设
其中
证 在(2.3)式中令
根据
由于
于是
接下来用数学归纳法证明如下结论
当
假设(3.2)式对于一切
这里利用了文献[22]中的结论即
定理证毕.
下面再探讨超逼近性质.先分析关于Ritz投影算子的超逼近性质.为此,对任意
记
定理3.2 设
证 在(3.4)式中令
根据
因此上式可变形为
下面分别估计
由于
根据
其中
利用(2.2)式有
将
由引理2.2可知
由
接下来再来估计
基于
类似于(3.6)式中
基于(2.2)式得
综合(3.9)-(3.11)式和
由引理2.2可知
结合(3.7)和(3.12)式,得定理3.2的第二式.定理证毕.
定理3.3 设
证 由于
根据定理3.2有
利用引理2.1可得
因此
定理证毕.
为了进行整体超收敛分析,我们可以根据文献[28]在
这里
其中
应用定理3.3和插值算子
定理3.4 在定理3.3的条件下有
注3.1 在定理3.2的讨论中,如果将投影算子
(1)此时最优误差为
(2)在估计
因此,可以看出虽然单独利用插值算子
4 数值结果
本节为了验证理论分析的有效性和正确性,给出了一些数值结果.
考虑如下的时间分数阶扩散方程
这里
表 1
当
阶 | 阶 | 阶 | |||||
3.869e-03 | / | 4.026e-03 | / | 2.121e-02 | / | ||
1.687e-03 | 1.198 | 1.780e-03 | 1.178 | 9.538e-03 | 1.153 | ||
0.1 | 7.486e-04 | 1.172 | 7.959e-04 | 1.161 | 4.292e-03 | 1.152 | |
3.368e-04 | 1.152 | 3.570e-04 | 1.157 | 1.934e-03 | 1.150 | ||
2.091e-05 | / | 1.294e-05 | / | 1.656e-04 | / | ||
9.240e-06 | 1.178 | 5.780e-06 | 1.163 | 7.369e-05 | 1.168 | ||
0.01 | 4.125e-06 | 1.164 | 2.596e-06 | 1.155 | 3.308e-05 | 1.156 | |
1.855e-06 | 1.153 | 1.169e-06 | 1.151 | 1.490e-05 | 1.150 |
表 2
当
阶 | 阶 | 阶 | |||||
6.913e-04 | / | 9.330e-04 | / | 2.740e-03 | / | ||
1.890e-04 | 1.871 | 2.537e-04 | 1.879 | 7.466e-04 | 1.876 | ||
0.1 | 5.174e-05 | 1.869 | 6.974e-05 | 1.863 | 2.044e-04 | 1.869 | |
1.430e-05 | 1.856 | 1.9267e-05 | 1.856 | 5.649e-05 | 1.855 | ||
6.845e-05 | / | 8.960e-05 | / | 2.832e-04 | / | ||
1.881e-05 | 1.864 | 2.461e-05 | 1.864 | 7.790e-05 | 1.862 | ||
0.01 | 5.196e-06 | 1.856 | 6.799e-06 | 1.856 | 2.153e-05 | 1.855 | |
1.440e-06 | 1.851 | 1.885e-06 | 1.851 | 5.968e-06 | 1.851 |
表 3
阶 | 阶 | 阶 | 阶 | ||||||
1/4 | 3.952e-02 | / | 8.084e-02 | / | 1.437e-01 | / | 1.860e-01 | / | |
1.042e-02 | 1.923 | 2.140e-02 | 1.918 | 3.814e-02 | 1.914 | 4.942e-02 | 1.912 | ||
0.3 | 2.640e-03 | 1.981 | 5.424e-03 | 1.980 | 9.676e-03 | 1.979 | 1.254e-02 | 1.979 | |
6.622e-04 | 1.995 | 1.361e-03 | 1.995 | 2.428e-03 | 1.995 | 3.146e-03 | 1.995 | ||
1/4 | 3.642e-02 | / | 7.756e-02 | / | 1.413e-01 | / | 1.844e-01 | / | |
1/8 | 9.487e-02 | 1.941 | 2.039e-02 | 1.928 | 3.737e-02 | 1.919 | 4.889e-02 | 1.915 | |
0.6 | 2.395e-03 | 1.986 | 5.158e-03 | 1.983 | 9.471e-03 | 1.980 | 1.240e-02 | 1.979 | |
6.002e-04 | 1.997 | 1.293e-03 | 1.995 | 2.376e-03 | 1.995 | 3.111e-03 | 1.995 | ||
3.229e-02 | / | 7.331e-02 | / | 1.388e-01 | / | 1.833e-01 | / | ||
8.277e-03 | 1.964 | 1.908e-02 | 1.942 | 3.656e-02 | 1.925 | 4.851e-02 | 1.918 | ||
0.9 | 2.081e-03 | 1.992 | 4.814e-03 | 1.986 | 9.255e-03 | 1.982 | 1.230e-02 | 1.980 | |
5.209e-04 | 1.998 | 1.206e-03 | 1.997 | 2.321e-03 | 1.996 | 3.084e-03 | 1.995 |
表 4
阶 | 阶 | 阶 | 阶 | ||||||
5.310e-02 | / | 1.103e-01 | / | 1.982e-01 | / | 2.575e-01 | / | ||
1.387e-02 | 1.937 | 2.894e-02 | 1.930 | 5.217e-02 | 1.925 | 6.790e-02 | 1.923 | ||
0.3 | 3.506e-03 | 1.984 | 7.324e-03 | 1.982 | 1.321e-02 | 1.981 | 1.720e-02 | 1.981 | |
8.791e-04 | 1.995 | 1.837e-03 | 1.996 | 3.315e-03 | 1.995 | 4.316e-03 | 1.995 | ||
4.606e-02 | / | 1.028e-01 | / | 1.926e-01 | / | 2.538e-01 | / | ||
1.183e-02 | 1.961 | 2.673e-02 | 1.944 | 5.048e-02 | 1.932 | 6.676e-02 | 1.927 | ||
0.6 | 2.977e-03 | 1.990 | 6.749e-03 | 1.986 | 1.277e-02 | 1.983 | 1.690e-02 | 1.982 | |
7.457e-04 | 1.997 | 1.691e-03 | 1.996 | 3.202e-03 | 1.996 | 4.240e-03 | 1.995 | ||
3.674e-02 | / | 9.320e-02 | / | 1.870e-01 | / | 2.514e-01 | / | ||
9.223e-03 | 1.994 | 2.389e-02 | 1.964 | 4.872e-02 | 1.940 | 6.593e-02 | 1.931 | ||
0.9 | 2.311e-03 | 1.997 | 6.012e-03 | 1.991 | 1.231e-02 | 1.985 | 1.668e-02 | 1.983 | |
5.781e-04 | 1.999 | 1.505e-03 | 1.998 | 3.085e-03 | 1.996 | 4.182e-03 | 1.996 |
表 5
阶 | 阶 | 阶 | 阶 | ||||||
1.540e-01 | / | 3.080e-01 | / | 5.390e-01 | / | 6.931e-01 | / | ||
4.179e-02 | 1.882 | 8.357e-02 | 1.882 | 1.462e-01 | 1.882 | 1.880e-01 | 1.882 | ||
0.3 | 1.067e-02 | 1.970 | 2.133e-02 | 1.970 | 3.733e-02 | 1.970 | 4.800e-02 | 1.970 | |
2.681e-03 | 1.992 | 5.361e-03 | 1.992 | 9.383e-03 | 1.992 | 1.206e-02 | 1.992 | ||
1.545e-01 | / | 3.082e-01 | / | 5.391e-01 | / | 6.931e-01 | / | ||
4.190e-02 | 1.882 | 8.362e-02 | 1.882 | 1.462e-01 | 1.882 | 1.880e-01 | 1.882 | ||
0.6 | 1.069e-02 | 1.970 | 2.134e-02 | 1.970 | 3.733e-02 | 1.970 | 4.780e-02 | 1.970 | |
2.687e-03 | 1.993 | 5.364e-03 | 1.992 | 9.382e-03 | 1.992 | 1.206e-02 | 1.992 | ||
1.557e-01 | / | 3.088e-01 | / | 5.391e-01 | / | 6.931e-01 | / | ||
4.221e-02 | 1.883 | 8.379e-02 | 1.882 | 1.463e-01 | 1.882 | 1.880e-01 | 1.882 | ||
0.9 | 1.077e-02 | 1.971 | 2.138e-02 | 1.970 | 3.734e-02 | 1.970 | 4.800e-02 | 1.970 | |
2.071e-03 | 1.993 | 5.374e-03 | 1.993 | 9.384e-03 | 1.992 | 1.206e-02 | 1.992 |
参考文献
Analytical solutions of multi-term time fractional differential equations and application to unsteady flows of generalized viscoelastic fluid
,
Approximate analytical solution for seepage flow with fractional derivatives in porous media
,
Finite difference methods for the time fractional diffusion equations and non-uniform meshes
,
Compact difference scheme for distributed-order time-fractional diffusion-wave equation on bounded domains
,
Crank-nicolson ADI spectral method for the two-dimensional Riesz space fractional nonlinear reaction-diffusion equation
,DOI:10.1137/130934192 [本文引用: 1]
A high-order spectral method for the multi-term time-fractional diffusion equations
,DOI:10.1016/j.apm.2015.12.011 [本文引用: 1]
A new fractional finite volume method for solving the fractional diffusion equation
,DOI:10.1016/j.apm.2013.10.007 [本文引用: 1]
A fast finite volume method for conservative space-fractional diffusion equations in convex domains
,DOI:10.1016/j.jcp.2016.01.015 [本文引用: 1]
Analysis of a new finite difference/local discontinuous Galerkin method for the fractional diffusionwave equation
,
The Galerkin finite element method for a multi-term time-fractional diffusion equation
,DOI:10.1016/j.jcp.2014.10.051 [本文引用: 1]
Galerkin finite element method and error analysis for the fractional cable equation
,DOI:10.1007/s11075-015-0055-x [本文引用: 1]
The randomwalk's guide to anomalous diffusion:a fractional dynamics approach
,DOI:10.1016/S0370-1573(00)00070-3 [本文引用: 1]
Superconvergence and extrapolation on nonconforming low order finite elements applied to the Poission equation
,
半线性伪双曲方程最低阶的H1-Galerkin混合元方法
,
The lowest order H1-Galerkin mixed finite element method for semi-linear pseudohyperbolic equation
抛物型积分-微分方程有限元近似的超收敛性质
,DOI:10.3969/j.issn.1000-081X.2001.03.001 [本文引用: 1]
Superconvergence of finite element approximations to integro-differential equations of parabolic type
DOI:10.3969/j.issn.1000-081X.2001.03.001 [本文引用: 1]
Superconvergence analysis of an H1-Galerkin mixed finite element method for Sobolev equations
,
A new approach of superconvergence analysis for nonlinear BBM equation on anisotropic meshes
,DOI:10.1016/j.aml.2016.02.007 [本文引用: 1]
Superconvergence analysis of nonconforming fnite element method for two-dimensional time fractional difusion equations
,DOI:10.1016/j.aml.2016.03.005 [本文引用: 2]
Two mixed finite element methods for time-fractional diffusion equations
,DOI:10.1007/s10915-015-0152-y [本文引用: 3]
Analytical solution and nonconforming finite element approximation for the 2D multi-term fractional subdiffusion equation
,DOI:10.1016/j.apm.2016.05.039 [本文引用: 1]
各向异性网格下线性三角形元的超收敛性分析
,DOI:10.3969/j.issn.1005-3085.2007.03.014 [本文引用: 1]
The superconvergence analysis of linear triangular element on anisotropic meshes
DOI:10.3969/j.issn.1005-3085.2007.03.014 [本文引用: 1]
非线性sine-Gordon方程的各向异性线性元高精度分析新模式
,
A new pattern of high accuracy analysis of anisotropic linear element for nonlinear sine-gordon equations
Superconvergence analysis of anisotropic linear triangular finite element for nonlinear Schrödinger equation
,
/
〈 | 〉 |