1 |
He J H. Nonlinear Oscillation with Fractional Derivative and its Applications//Wen B C. International Conference on Vibrating Engineering' 98. Shenyang:Northeastern Univ Press, 1998:288-291
|
2 |
Ming C , Liu F , Zheng L , et al. Analytical solutions of multi-term time fractional differential equations and application to unsteady flows of generalized viscoelastic fluid. Computational Methods in Applied Mathematics, 2016, 72: 2084- 2097
|
3 |
He J H . Approximate analytical solution for seepage flow with fractional derivatives in porous media. Computer Methods in Applied Mechanics & Engineering, 1998, 167 (1-2): 57- 68
|
4 |
Mainardi F. Fractional Calculus, Some Basic Problems in Continuumand Statisticalmechanics//Carpinteri A, Mainardi F, et al. Fractals and Fractional Calculus in Continuum Mechanics. New York:Springer Verlag, 1997:291-348
|
5 |
Kilbas A, Srivastava H, Trujillo J. Theory and Applications of Fractional Differential Equations. Amsterdam:Elsevier, 2006
|
6 |
Liu F , Zhuang P , Liu Q . Numerical Methods of Fractional Partial Differential Equations and Applications. Beijing: Science Press, 2015
|
7 |
Zhang Y N , Sun Z Z , Liao H L . Finite difference methods for the time fractional diffusion equations and non-uniform meshes. Journal of Computational Physics, 2014, 265 (3): 195- 210
|
8 |
Ye H , Liu F , Anh V . Compact difference scheme for distributed-order time-fractional diffusion-wave equation on bounded domains. Journal of Computational Physics, 2015, 98: 652- 660
|
9 |
Zeng F , Liu F , Li C , et al. Crank-nicolson ADI spectral method for the two-dimensional Riesz space fractional nonlinear reaction-diffusion equation. SIAM Journal on Numerical Analysis, 2014, 52 (6): 2599- 2622
doi: 10.1137/130934192
|
10 |
Zheng M , Liu F , Anh V , et al. A high-order spectral method for the multi-term time-fractional diffusion equations. Applied Mathematical Modelling, 2016, 40 (7-8): 4970- 4985
doi: 10.1016/j.apm.2015.12.011
|
11 |
Liu F , Zhuang P , Turner I , et al. A new fractional finite volume method for solving the fractional diffusion equation. Applied Mathematical Modelling, 2014, 38 (15-16): 3871- 3878
doi: 10.1016/j.apm.2013.10.007
|
12 |
Jia J , Wang H . A fast finite volume method for conservative space-fractional diffusion equations in convex domains. Journal of Computational Physics, 2016, 310: 63- 84
doi: 10.1016/j.jcp.2016.01.015
|
13 |
Wei L . Analysis of a new finite difference/local discontinuous Galerkin method for the fractional diffusionwave equation. Numerical Algorithms, 2017, 304: 180- 189
|
14 |
Jin B , Lazarov R , Liu Y , et al. The Galerkin finite element method for a multi-term time-fractional diffusion equation. Journal of Computational Physics, 2015, 281: 825- 843
doi: 10.1016/j.jcp.2014.10.051
|
15 |
Zhuang P , Liu F , Turner I , et al. Galerkin finite element method and error analysis for the fractional cable equation. Numerical Algorithms, 2016, 72 (2): 447- 466
doi: 10.1007/s11075-015-0055-x
|
16 |
Metzler R , Klafter J . The randomwalk's guide to anomalous diffusion:a fractional dynamics approach. Physics Reports, 2000, 339 (1): 1- 77
doi: 10.1016/S0370-1573(00)00070-3
|
17 |
Lin Q , Tobiska L , Zhou A H . Superconvergence and extrapolation on nonconforming low order finite elements applied to the Poission equation. IMA Journal of Numerical Analysis, 2005, 25 (1): 160- 181
|
18 |
石东洋, 史艳华. 半线性伪双曲方程最低阶的H1-Galerkin混合元方法. 系统科学与数学, 2015, 35 (5): 514- 526
|
|
Shi D Y , Shi Y H . The lowest order H1-Galerkin mixed finite element method for semi-linear pseudohyperbolic equation. Journal of Systems Science and Mathematical Sciences, 2015, 35 (5): 514- 526
|
19 |
张铁. 抛物型积分-微分方程有限元近似的超收敛性质. 高等学校计算数学学报, 2001, 23 (3): 193- 201
doi: 10.3969/j.issn.1000-081X.2001.03.001
|
|
Zhang T . Superconvergence of finite element approximations to integro-differential equations of parabolic type. Numerical Mathematies A Journal of Chinese Universities, 2001, 23 (3): 193- 201
doi: 10.3969/j.issn.1000-081X.2001.03.001
|
20 |
Shi D Y , Wang J J . Superconvergence analysis of an H1-Galerkin mixed finite element method for Sobolev equations. Computers & Mathematics with Applications, 2016, 72 (6): 1590- 1602
|
21 |
Shi D Y , Yang H J . A new approach of superconvergence analysis for nonlinear BBM equation on anisotropic meshes. Applied Mathematics Letters, 2016, 58: 74- 80
doi: 10.1016/j.aml.2016.02.007
|
22 |
Zhao Y M , Zhang Y D , Shi D Y , et al. Superconvergence analysis of nonconforming fnite element method for two-dimensional time fractional difusion equations. Applied Mathematics Letters, 2016, 59: 38- 47
doi: 10.1016/j.aml.2016.03.005
|
23 |
Zhao Y M , Chen P , Bu W P , et al. Two mixed finite element methods for time-fractional diffusion equations. Journal of Scientific Computing, 2017, 70 (1): 407- 428
doi: 10.1007/s10915-015-0152-y
|
24 |
Zhao Y M , Zhang Y D , Liu F , et al. Analytical solution and nonconforming finite element approximation for the 2D multi-term fractional subdiffusion equation. Applied Mathematical Modelling, 2016, 40: 8810- 8825
doi: 10.1016/j.apm.2016.05.039
|
25 |
石东洋, 梁慧. 各向异性网格下线性三角形元的超收敛性分析. 工程数学学报, 2007, 24 (3): 487- 493
doi: 10.3969/j.issn.1005-3085.2007.03.014
|
|
Shi D Y , Liang H . The superconvergence analysis of linear triangular element on anisotropic meshes. Chinese Journal of Engineering Mathematics, 2007, 24 (3): 487- 493
doi: 10.3969/j.issn.1005-3085.2007.03.014
|
26 |
石东洋, 王芬玲, 赵艳敏. 非线性sine-Gordon方程的各向异性线性元高精度分析新模式. 计算数学, 2014, 36 (3): 245- 256
|
|
Shi D Y , Wang F L , Zhao Y M . A new pattern of high accuracy analysis of anisotropic linear element for nonlinear sine-gordon equations. Mathematica Numerica Sinica, 2014, 36 (3): 245- 256
|
27 |
Shi D Y , Wang P L , Zhao Y M . Superconvergence analysis of anisotropic linear triangular finite element for nonlinear Schrödinger equation. Applied Mathematics Letters, 2014, 38 (38): 129- 134
|
28 |
林群, 严宁宁. 高效有限元构造与分析. 保定: 河北大学出版社, 1996
|
|
Lin Q , Y N N . The Construction and Analysis of High Eficient Finite Element Methods. Baoding: Hebei University Press, 1996
|
29 |
张铁. 偏微分-积分方程的有限元方法. 北京: 科学出版社, 2009
|
|
Zhang T . Finite Element Methods for Partial Differentio-Integral Equations. Beijing: Science Press, 2009
|