具有变时滞的神经型Hopfield神经网络的全局吸引子研究
Global Attracting Set for Neutral Type Hopfield Neural Networks with Time-Varying Delays
通讯作者:
收稿日期: 2018-04-1
基金资助: |
|
Received: 2018-04-1
Fund supported: |
|
该文探讨了一类具有变时滞的非线性及非自治的神经型Hopfield神经网络的渐近性质.利用非负矩阵的性质和矩阵不等式,得到了保证该系统全局吸引集存在和Lagrange稳定性的充分条件.最后,给出一个例子说明理论的有效性.
关键词:
This paper deals with the asymptotic properties of a class of nonlinear and nonautonomous neutral type Hopfield neural networks with time-varying delays. By applying the property of nonnegative matrix and an integral inequality, some sufficient conditions are derived to ensure the existence of the global attracting set and the stability in a Lagrange sense for the considered system. Finally, an example is given to demonstrate the effectiveness of our theoretical result.
Keywords:
本文引用格式
周庆华, 万立, 刘杰.
Zhou Qinghua, Wan Li, Liu Jie.
1 引言
本文的结构如下.首先是预备知识,包括一些必要的定义、假设以及引理.第3部分讨论模型的全局吸引集.第4部分列举例验证主要结果.第5部分给出结论.
2 预备知识
本文中,
我们考虑如下具有变时滞的神经型Hopfield神经网络模型
模型(2.1)由一元神经域
系统(2.1)的初始条件是
我们定义如下符号
为了方便进一步讨论,我们给出如下假设,定义及重要引理.
(A1)对任意
(A2)对
(A3)对
(A4)
(A5)对某些
定义2.1 如果对任意常数
定义2.2 如果存在一个紧集
其中
定义2.3 如果系统(2.1)是一致有界并且有一个全局吸引集
定义2.4[28] 设
则称
引理2.1[37] 对任意非负矩阵
引理2.2 令
若满足如下条件
(ⅰ)
(ⅱ)
则存在常数向量
证 由条件(ⅱ)和引理2.1,
假设(2.3)式不成立,则一定存在一个常数
其中
不失一般性,我们假设存在一个常数
考虑到表达式(2.2), (2.4)和
这与等式(2.5)矛盾,因此不等式(2.3)成立.证明完毕.
3 主要结论
定理3.1 假设(A1)-(A4)成立,则系统(2.1)一致有界.
证 由条件(A1),对任意
从而
由(A2)可得
由(3.1)和(3.2)式,可得
结合(3.3)式,条件(A3), (A4)和引理2.2,可得存在一个常数向量
即系统(2.1)的解关于局部状态
注3.1 由(3.4)式易得每个解的分量的有界性.
定理3.2 假设满足(A1)-(A5),则集合
为系统(2.1)的全局吸引集,即系统(2.1)为全局Lagrange稳定.
证 由定理3.1,存在一个非负常数向量
下面我们将证明
由条件(A5)和定义2.4,
当
由(3.6)和(3.7)式,可推得对于
根据上极限的定义和
其中
因此,结合条件(A3), (3.3)和(3.8)-(3.10)式,可得对任意
再由(3.5)式和上极限定义,存在
令
和
即
注3.2 显然,如果系统(2.1)有一个全局吸引集,则系统(2.1)的解一致有界.
注3.3 若把平衡点作为吸引集的特殊情况,则Lyapunov稳定为Lagrange稳定的特例.因此,如果系统存在平衡点,定理3.2的结论课用于讨论Lyapunov稳定性.
定理3.3 假设定理3.2的所有条件成立及
4 数值举例
例4.1 考虑如下模型
其中
和
定理3.2中所有的条件都满足,所以存在
为系统(4.1)的全局吸引集.
图 1
5 结论
基于积分不等式和非负矩阵的性质,考虑了变时滞神经型Hopfield神经网络模型,得到了保证系统Lagrange稳定和全局吸引集的充分条件.并且,本文的方法可以用来研究平衡点的全局渐近稳定性.
参考文献
Hyperchaos and bifurcation in a new class of four-dimensional Hopfield neural networks
,DOI:10.1016/j.neucom.2005.11.001 [本文引用: 1]
Stability and bifurcation of a class of discrete-time neural networks
,
Bifurcation analysis for a discrete-time Hopfield neural network of two neurons with two delays and self-connections
,DOI:10.1016/j.chaos.2007.01.126
Some novel double-scroll chaotic attractors in Hopfield networks
,DOI:10.1016/j.neucom.2010.02.015
Hopf bifurcation stability in Hopfield neural networks
,DOI:10.1016/j.neunet.2012.09.007
Bifurcations and chaos in a discrete-time-delayed Hopfield neural network with rings tructures and different internal decays
,DOI:10.1016/j.neucom.2012.06.007
Generation of cyclic/toroidal chaos by Hopfield neural networks
,DOI:10.1016/j.neucom.2014.05.038
On a discrete-time-delayed Hopfield neural network with ring structures and different internal decays: Bifurcations analysis and chaotic behavior
,DOI:10.1016/j.neucom.2014.06.079 [本文引用: 1]
Anti-periodic solutions for high-order Hopfield neural networks with impulses
,DOI:10.1016/j.neucom.2014.01.028 [本文引用: 1]
Existence and exponential stability of periodic solution for stochastic Hopfield neural networks on time scales
,DOI:10.1016/j.neucom.2015.04.038
Piecewise pseudo-almost periodic solution for impulsive non-autonomous high-order Hopfield neural networks with variable delays
,DOI:10.1016/j.neucom.2015.07.054 [本文引用: 1]
Multistability in impulsive hybrid Hopfield neural networks with distributed delays
,DOI:10.1016/j.nonrwa.2010.10.018 [本文引用: 2]
Simplified stability criteria for fuzzy Markovian jumping Hopfield neural networks of neutral type with interval time-varying delays
,DOI:10.1016/j.eswa.2011.11.055
Stability analysis of fractional-order Hopfield neural networks with time delays
,DOI:10.1016/j.neunet.2014.03.012
Global stability analysis of fractional-order Hopfield neural networks with time delay
,DOI:10.1016/j.neucom.2014.12.031
New delay-dependent stability criteria for switched Hopfield neural networks of neutral type with additive time-varying delay components
,DOI:10.1016/j.neucom.2014.10.014
Stability analysis of Hopfield neural networks perturbed by Poisson noises
,DOI:10.1016/j.neucom.2016.02.034
Stability analysis of fractional-order Hopfield neural networks with discontinuous activation functions
,DOI:10.1016/j.neucom.2015.07.077 [本文引用: 2]
Positive invariant and global exponential attractive sets of neural networks with time-varying delays
,DOI:10.1016/j.neucom.2007.07.017 [本文引用: 2]
Cocycle attractors in nonautonomously perturbed dif- ferential equations
,
Autonomous and non-autonomous attractors for differential equations with delays
,
Pullback and forward attractors for a damped wave equation with delays
,
Attractors for 2D-Navier-Stokes models with delays
,
Delay-range-dependent control synthesis for time-delay systems with actuator saturation
,DOI:10.1016/j.automatica.2008.03.009 [本文引用: 2]
Integro-differential equations and delay integral inequalities
,DOI:10.2748/tmj/1178227303 [本文引用: 3]
Invariant set and attractor of nonautonomous functional differential systems
,DOI:10.1016/S0022-247X(02)00370-0
Attracting and invariant sets for a class of implusive functional defferential equations
,DOI:10.1016/j.jmaa.2006.05.072
The exponential asymtotic stability of singularly perturbed delay differential equations with a bounded lag
,DOI:10.1016/S0022-247X(02)00056-2
Exponential stability of nonlinear implusive neutral differential equations with delays
,
Global exponential stability of impulisive reaction-diffusion equation with variable delays
,
Global attracting set for non-autonomous neutral networks with distributed delays
,DOI:10.1016/j.neucom.2012.04.020
Lagrange stability for delayed recurrent neural networks with Markovian switching based on stochastic vector Halandy inequalities
,DOI:10.1016/j.neucom.2017.10.006
Global exponential stability of neutral-type octonion-valued neural networks with time-varying delays
,DOI:10.1016/j.neucom.2018.05.004
/
〈 | 〉 |