数学物理学报 ›› 2019, Vol. 39 ›› Issue (4): 823-831.
收稿日期:
2018-04-01
出版日期:
2019-08-26
发布日期:
2019-09-11
通讯作者:
万立
E-mail:wanlinju@aliyun.com
基金资助:
Qinghua Zhou1,Li Wan2,*(),Jie Liu2
Received:
2018-04-01
Online:
2019-08-26
Published:
2019-09-11
Contact:
Li Wan
E-mail:wanlinju@aliyun.com
Supported by:
摘要:
该文探讨了一类具有变时滞的非线性及非自治的神经型Hopfield神经网络的渐近性质.利用非负矩阵的性质和矩阵不等式,得到了保证该系统全局吸引集存在和Lagrange稳定性的充分条件.最后,给出一个例子说明理论的有效性.
中图分类号:
周庆华,万立,刘杰. 具有变时滞的神经型Hopfield神经网络的全局吸引子研究[J]. 数学物理学报, 2019, 39(4): 823-831.
Qinghua Zhou,Li Wan,Jie Liu. Global Attracting Set for Neutral Type Hopfield Neural Networks with Time-Varying Delays[J]. Acta mathematica scientia,Series A, 2019, 39(4): 823-831.
1 |
Huang Y , Yang X S . Hyperchaos and bifurcation in a new class of four-dimensional Hopfield neural networks. Neurocomputing, 2006, 69: 1787- 1795
doi: 10.1016/j.neucom.2005.11.001 |
2 |
He W , Cao J . Stability and bifurcation of a class of discrete-time neural networks. Appl Math Model, 2007, 31: 2111- 2122
doi: 10.1016/j.apm.2006.08.006 |
3 | Huang W , Huang Y . Chaos of a new class of Hopfield neural networks. Appl Math Comput, 2008, 206: 1- 11 |
4 |
Kaslik E , Balint St . Bifurcation analysis for a discrete-time Hopfield neural network of two neurons with two delays and self-connections. Chaos Soliton Fract, 2009, 39: 83- 91
doi: 10.1016/j.chaos.2007.01.126 |
5 |
Zheng P S , Tang W S , Zhang J X . Some novel double-scroll chaotic attractors in Hopfield networks. Neurocomputing, 2010, 73: 2280- 2285
doi: 10.1016/j.neucom.2010.02.015 |
6 |
Marichal R L , Gonzalez E J , Marichal G N . Hopf bifurcation stability in Hopfield neural networks. Neural Netw, 2012, 36: 51- 58
doi: 10.1016/j.neunet.2012.09.007 |
7 |
Mazrooei-Sebdani R , Farjami S . Bifurcations and chaos in a discrete-time-delayed Hopfield neural network with rings tructures and different internal decays. Neurocomputing, 2013, 99: 154- 162
doi: 10.1016/j.neucom.2012.06.007 |
8 |
Akhmet M , Fen M . Generation of cyclic/toroidal chaos by Hopfield neural networks. Neurocomputing, 2014, 145: 230- 239
doi: 10.1016/j.neucom.2014.05.038 |
9 |
Mazrooei-Sebdani R , Farjami S . On a discrete-time-delayed Hopfield neural network with ring structures and different internal decays: Bifurcations analysis and chaotic behavior. Neurocomputing, 2015, 151: 188- 195
doi: 10.1016/j.neucom.2014.06.079 |
10 |
Wang Q , Fang Y Y , Li H , Su L J , Dai B X . Anti-periodic solutions for high-order Hopfield neural networks with impulses. Neurocomputing, 2014, 138: 339- 346
doi: 10.1016/j.neucom.2014.01.028 |
11 |
Yang L , Li Y K . Existence and exponential stability of periodic solution for stochastic Hopfield neural networks on time scales. Neurocomputing, 2015, 167: 543- 550
doi: 10.1016/j.neucom.2015.04.038 |
12 |
Wang C . Piecewise pseudo-almost periodic solution for impulsive non-autonomous high-order Hopfield neural networks with variable delays. Neurocomputing, 2016, 171: 1291- 1301
doi: 10.1016/j.neucom.2015.07.054 |
13 |
Kaslik E , Sivasundaram S . Multistability in impulsive hybrid Hopfield neural networks with distributed delays. Nonlinear Anal-Real, 2011, 12: 1640- 1649
doi: 10.1016/j.nonrwa.2010.10.018 |
14 |
Park M J , Kwon O M , Park J H , Lee S M . Simplified stability criteria for fuzzy Markovian jumping Hopfield neural networks of neutral type with interval time-varying delays. Expert Syst Appl, 2012, 39: 5625- 5633
doi: 10.1016/j.eswa.2011.11.055 |
15 |
Wang H , Yu Y G , Wen G G . Stability analysis of fractional-order Hopfield neural networks with time delays. Neural Netw, 2014, 55: 98- 109
doi: 10.1016/j.neunet.2014.03.012 |
16 |
Wang H , Yu Y G , Wen G G , et al. Global stability analysis of fractional-order Hopfield neural networks with time delay. Neurocomputing, 2015, 154: 15- 23
doi: 10.1016/j.neucom.2014.12.031 |
17 |
Dharani S , Rakkiyappan R , Cao J D . New delay-dependent stability criteria for switched Hopfield neural networks of neutral type with additive time-varying delay components. Neurocomputing, 2015, 151: 827- 834
doi: 10.1016/j.neucom.2014.10.014 |
18 |
Song B , Zhang Y , Shu Z , Hu F N . Stability analysis of Hopfield neural networks perturbed by Poisson noises. Neurocomputing, 2016, 196: 53- 58
doi: 10.1016/j.neucom.2016.02.034 |
19 |
Zhang S , Yu Y G , Wang Q . Stability analysis of fractional-order Hopfield neural networks with discontinuous activation functions. Neurocomputing, 2016, 171: 1075- 1084
doi: 10.1016/j.neucom.2015.07.077 |
20 |
Liao X X , Luo Q , Zeng Z G . Positive invariant and global exponential attractive sets of neural networks with time-varying delays. Neurovomputing, 2008, 71: 513- 518
doi: 10.1016/j.neucom.2007.07.017 |
21 | Crauel H , Debussche A , Flandoli F . Random attractors. J Dynam Differ Equ, 1995, 9: 307- 341 |
22 | Kloeden P , Stonier D J . Cocycle attractors in nonautonomously perturbed dif- ferential equations. Dynam Continuous Discrete Impulsive Systems, 1998, 4: 211- 226 |
23 | Cheban D N . Dissipative functional differential equations. Bull Acad Sci Rep Moldova Mat, 1991, 2 (5): 3- 12 |
24 |
Caraballo T , Marn-Rubio P , Valero J . Autonomous and non-autonomous attractors for differential equations with delays. J Differ Equ, 2005, 208: 9- 41
doi: 10.1016/j.jde.2003.09.008 |
25 |
Caraballo T , Kloeden P E , Real J . Pullback and forward attractors for a damped wave equation with delays. Stoch Dyn, 2004, 4: 405- 423
doi: 10.1142/S0219493704001139 |
26 |
Caraballo T , Real J . Attractors for 2D-Navier-Stokes models with delays. J Differ Equ, 2004, 205: 271- 297
doi: 10.1016/j.jde.2004.04.012 |
27 |
Zhang L X , Boukas E K , Haidar A . Delay-range-dependent control synthesis for time-delay systems with actuator saturation. Automatica, 2008, 44: 2691- 2695
doi: 10.1016/j.automatica.2008.03.009 |
28 |
Xu D Y . Integro-differential equations and delay integral inequalities. Tohoku Math J, 1992, 44: 365- 378
doi: 10.2748/tmj/1178227303 |
29 |
Zhao H Y . Invariant set and attractor of nonautonomous functional differential systems. J Math Anal Appl, 2003, 282: 437- 443
doi: 10.1016/S0022-247X(02)00370-0 |
30 |
Xu D Y , Yang Z C . Attracting and invariant sets for a class of implusive functional defferential equations. J Math Anal Appl, 2007, 329: 1036- 1044
doi: 10.1016/j.jmaa.2006.05.072 |
31 |
Tian H . The exponential asymtotic stability of singularly perturbed delay differential equations with a bounded lag. J Math Anal Appl, 2002, 270: 143- 149
doi: 10.1016/S0022-247X(02)00056-2 |
32 |
Xu D Y , Yang Z G . Exponential stability of nonlinear implusive neutral differential equations with delays. Nonlinear Anal Theory Methods Appl, 2007, 67: 1426- 1439
doi: 10.1016/j.na.2006.07.043 |
33 | Zhu W . Global exponential stability of impulisive reaction-diffusion equation with variable delays. Appl Math Comput, 2008, 205: 362- 369 |
34 |
Teng L Y , Xu D Y . Global attracting set for non-autonomous neutral networks with distributed delays. Neurocomputing, 2012, 94: 64- 67
doi: 10.1016/j.neucom.2012.04.020 |
35 |
Liu L , Zhu Q X , Feng L C . Lagrange stability for delayed recurrent neural networks with Markovian switching based on stochastic vector Halandy inequalities. Neurocomputing, 2018, 275: 1614- 1621
doi: 10.1016/j.neucom.2017.10.006 |
36 |
Popa A C . Global exponential stability of neutral-type octonion-valued neural networks with time-varying delays. Neurocomputing, 2018, 309: 117- 133
doi: 10.1016/j.neucom.2018.05.004 |
37 | LaSalle J P. The Stability of Dynamical System. Philadelphia: SIAM, 1976 |
[1] | 杨甲山, 李同兴. 时间模上一类二阶阻尼Emden-Fowler型动态方程的振荡性[J]. 数学物理学报, 2018, 38(1): 134-155. |
[2] | 黄祖达. 一类具反馈控制的时滞飞蝇方程的伪概周期解[J]. 数学物理学报, 2016, 36(3): 558-568. |
[3] | 罗日才, 许弘雷, 王五生. 一类新的变时滞中立型神经网络的全局渐近稳定性条件[J]. 数学物理学报, 2015, 35(3): 634-640. |
[4] | 阿卜杜杰力力·阿卜杜热合曼, 蒋海军, 滕志东. 具有混合变时滞的脉冲Cohen-Grossberg神经网络的指数同步[J]. 数学物理学报, 2015, 35(3): 545-557. |
[5] | 席博彦, 祁锋. s-对数凸函数的Hermite-Hadamard型积分不等式[J]. 数学物理学报, 2015, 35(3): 515-524. |
[6] | 吴宇, 唐敏, 周察金. 一类非线性弱奇性Wendroff型积分不等式[J]. 数学物理学报, 2014, 34(6): 1465-1473. |
[7] | 刘琼. 一个具多参数核为双曲余切函数的积分不等式[J]. 数学物理学报, 2014, 34(4): 851-858. |
[8] | 刘琼, 龙顺潮. 一个推广的Hilbert型积分不等式[J]. 数学物理学报, 2014, 34(1): 179-185. |
[9] | 张雨田, 罗琦. 具反应扩散项和Neumann边界条件的脉冲变时滞细胞神经网络的全局指数稳定性[J]. 数学物理学报, 2013, 33(4): 777-786. |
[10] | 匡继昌. 赋范线性空间中的Hilbert型积分不等式[J]. 数学物理学报, 2013, 33(1): 1-5. |
[11] | 洪勇. 一类具有最佳常数因子的Hardy 型多重积分不等式[J]. 数学物理学报, 2011, 31(6): 1586-1591. |
[12] | 李俊民. 非线性参数化时变时滞系统自适应迭代学习控制[J]. 数学物理学报, 2011, 31(3): 682-690. |
[13] | 辛冬梅, 杨必成. 一个新的Hilbert型积分不等式的推广[J]. 数学物理学报, 2010, 30(6): 1648-1653. |
[14] | 罗日才, 王五生, 许弘雷. 一类非连续函数积分不等式中未知函数的估计及其应用[J]. 数学物理学报, 2010, 30(4): 1176-1182. |
[15] | 鲁圣洁, 陶祥兴. 多重的非对称核Hardy-Hilbert积分不等式[J]. 数学物理学报, 2009, 29(3): 597-606. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 121
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 75
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|