Processing math: 8%

数学物理学报, 2019, 39(4): 738-760 doi:

论文

平面平行管道中的MHD方程组的边界层

王娜,1, 王术2

The Boundary Layer for MHD Equations in a Plane-Parallel Channel

Wang Na,1, Wang Shu2

通讯作者: 王娜, E-mail: wangna1989@hebtu.edu.cn

收稿日期: 2018-04-4  

基金资助: 国家自然科学基金.  11371042
河北师范大学科技类博士(后)基金.  L2019B03

Received: 2018-04-4  

Fund supported: the NSFC.  11371042
the (Post) Doctor Fund of Science and Technology of Hebei Normal University.  L2019B03

摘要

该文研究平面平行管道中不可压缩MHD方程组的边界层问题.利用多尺度分析和精细的能量方法,证明了当粘性系数与磁耗散系数趋近于0时,粘性与磁耗散MHD方程组的解收敛到理想MHD方程组的解.

关键词: 不可压缩MHD方程组 ; 边界层 ; 平面平行管道

Abstract

In this paper, we study the boundary layer problem for the incompressible MHD equations in a plane-parallel channel. Using the multiscale analysis and the careful energy method, we prove the convergence of the solution of viscous and diffuse MHD equations to that of the ideal MHD equations as the viscosity and magnetic diffusion coefficient tend to zero.

Keywords: Incompressible MHD equations ; Boundary layer ; Plane-parallel channel

PDF (433KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

王娜, 王术. 平面平行管道中的MHD方程组的边界层. 数学物理学报[J], 2019, 39(4): 738-760 doi:

Wang Na, Wang Shu. The Boundary Layer for MHD Equations in a Plane-Parallel Channel. Acta Mathematica Scientia[J], 2019, 39(4): 738-760 doi:

1 引言

磁流体力学(MHD)方程组是描述导电流体和电磁场之间相互作用的物理模型.在数学上,它是流体力学方程和磁场方程的强耦合组.在三维空间中,带有狄利克雷边界条件的不可压缩MHD方程组为

{tuε1Δu+uubb+p=F,tbε2Δb+ubbu=G,u=0, b=0,u|t=0=u0, b|t=0=b0,u|Λ=α, b|Λ=β,
(1.1)

这里ΛR3中的有界区域, u表示速度, b表示磁场, p是压力, ε1是粘性系数, ε2是磁耗散系数. FG是给定的外力, αβ是给定的函数.对于此方程组的适定性和正则性问题可参看文献[2, 5, 7-8, 14, 18].当ε1,ε2=0时,上述方程组就变成了如下的理想MHD方程组

{tu0+u0u0b0b0+p=F,tb0+u0b0b0u0=G,u0=0, b0=0,u0|t=0=u0, b0|t=0=b0.
(1.2)

带有滑移边界条件

u0n=αn, b0n=βn,
(1.3)

这里n是区域边界Λ的单位外法向量.

可以观察到系统(1.1)的边界条件与系统(1.2)–(1.3)的边界条件是不同的,因此不能简单地断定在ε1,ε20时这两个系统是否逼近.这就是所谓的边界层问题.它使得MHD方程组的极限问题变得同Navier-Stokes方程的极限问题一样具有困难性和挑战性.关于Navier-Stokes方程的边界层和零粘性消失极限问题,感兴趣的读者可参考文献[1, 3-4, 6, 9, 11-13, 16-17, 23].

对于不可压缩MHD方程组的边界层问题,已经有了一些结果.当速度满足特征狄利克雷边界条件(边界上无滑移无渗透),磁场满足完美传导墙边界条件, Liu等[10]研究初始磁场的第一个分量在边界上非退化的情况,得到了二维空间中的L收敛; Wang等[21]证明了三维空间中的L2收敛以及二维空间中的L收敛.当区域Λ=(0,L1)×(0,L2)×(0,h),系统(1.1)给定非特征狄利克雷边界条件(边界上无滑移可渗透),以及ε1=ε2, Xie等在文献[21]中考虑α=(0,0,U), β=(0,0,V), |U||V|的情况, Wang等在文献[20]中研究U=V>0的情况.在这两种情况下,他们都得到了三维空间中误差函数的L2范数估计以及二维空间中误差函数的L范数估计.

然而,当系统(1.1)关于速度和磁场都被赋予无渗透狄利克雷边界条件时,我们并不能得到像非特征狄利克雷边界条件那样令人满意的估计,这是因为在这两种边界条件下边界层的厚度是不同的.在无渗透狄利克雷边界条件下,更厚一点的边界层使得误差函数与边界层函数的混合项变得非常难处理. Wang等在文献[19]中研究了带有一类特殊初始值条件的粘性系数和磁耗散系数相等的情况,并且还研究了带有一般初始值条件的各向异性粘性和磁耗散系数的情况,在这两种情况下都得到了误差函数的L2范数估计.对于各向异性粘性和磁耗散MHD方程组的边界层问题, Wang等也在文献[22]中得到了同文献[19]类似的结果.

本文考虑无渗透狄利克雷边界条件的情形,将文献[1, 23-24]中关于Navier-Stokes方程的平面平行管道流推广到MHD方程组中去.这样误差函数与边界层函数的混合项就不再成为障碍了.在这种情形下,我们假定区域是无限长水平管道.并且假设在水平方向xy上是周期的,因此定义

Λ=[0,L]×[0,L]×[0,h],

这里L是水平方向的周期, z=0z=h是垂直方向的两个边界.在本文中,我们假设所有函数在水平方向xy上是周期的.令

u0=(m1(z),m2(x,z),0), b0=(n1(z),n2(x,z),0),
(1.4)

F=(F1(t,z),F2(t,x,z),0), G=(G1(t,z),G2(t,x,z),0),
(1.5)

寻找系统(1.1)具有与(1.4)–(1.5)式相同形式的解

u=(u1(t,z),u2(t,x,z),0), b=(b1(t,z),b2(t,x,z),0).
(1.6)

将(1.5)和(1.6)式代入到方程组(1.1)中可以得到

{tu1ε12zu1=F1,tu2ε1(2xu2+2zu2)+u1xu2b1xb2=F2,tb1ε22zb1=G1,tb2ε2(2xb2+2zb2)+u1xb2b1xu2=G2.
(1.7)

初始和边界条件为

{u1|t=0=m1(z), u2|t=0=m2(x,z),b1|t=0=n1(z), b2|t=0=n2(x,z),u|z=0=α0, u|z=h=αh,b|z=0=β0, b|z=h=βh,
(1.8)

这里

αi=(αi1(t),αi2(t,x)),βi=(βi1(t),βi2(t,x)),  i=0,h,
(1.9)

其中 F, G, m1, m2, n1, n2, αi, βi都不依赖于ε1ε2.定义 \Omega\triangleq[0, L]\times[0, h] .并且假设初始值与边界值满足0阶兼容性条件.我们可以看到形为(1.6)式的解自动满足散度自由的条件.在(1.7)式中,令 \varepsilon_{1}, \ \varepsilon_{2} = 0 ,可以得到理想的平面平行管道流

\begin{equation} \left\{\begin{array}{ll} & {\partial_{t}u_{1}^{0} = F_{1}, }\\ & {\partial_{t}u_{2}^{0}+u_{1}^{0}\partial_{x}u_{2}^{0}-b_{1}^{0}\partial_{x}b_{2}^{0} = F_{2}, }\\ & {\partial_{t}b_{1}^{0} = G_{1}, }\\ & {\partial_{t}b_{2}^{0}+u_{1}^{0}\partial_{x}b_{2}^{0}-b_{1}^{0}\partial_{x}u_{2}^{0} = G_{2}, } \end{array} \right. \end{equation}
(1.10)

初始值为

u_{1}^{0}|_{t = 0} = m_{1}(z), \ u_{2}^{0}|_{t = 0} = m_{2}(x, z),

b_{1}^{0}|_{t = 0} = n_{1}(z), \ b_{2}^{0}|_{t = 0} = n_{2}(x, z).

我们可以很容易求解方程组(1.10).并且若假设 F_{1}, F_{2}, G_{1}, G_{2}, m_{1}, m_{2}, n_{1} n_{2} 具有适当的正则性,我们就可以得到方程组解的正则性.在下面的部分中,我们将集中研究系统(1.7)和(1.10).本文的贡献是能够得到误差函数在空间和时间上的一致估计.

本文结构如下.在第2部分中,我们构造近似解并且给出本文的主要结果.第3部分致力于研究边界层函数的能量估计.第4部分是主要结果的证明.第5部分是总结.

2 近似解的构造

在引言中我们观察到若 \varepsilon_{1}, \ \varepsilon_{2}\rightarrow 0 ,则可以得到MHD方程组(1.7)的解在 \Omega 内趋近于理想MHD方程组(1.10)的解.但是在边界 \partial\Omega 上不成立.由此可推断出(1.7)的近似解应该包括内部函数与边界层函数两部分.由于有两个边界层,我们引进截断函数[1]

\rho(z)\in C^{\infty}([0, h]);\ 0\leq\rho(z)\leq1;\ \rho(z) = 1, z\in[0, \frac{h}{4}];\ \rho(z) = 0, z\in[\frac{h}{2}, h].

\rho(z) 的定义,可以很容易得到当 z\in[0, h] 时, \rho(z)\rho(h-z)\equiv0 .接下来构造方程组(1.7)的近似解

\begin{equation} \left\{\begin{array}{ll} {u_{1}^{app}(t, z) = u_{1}^{0}(t, z)+\rho(z)\varphi_{1}^{0, 0}(t, \frac{z}{\sqrt{\varepsilon^{*}}}) +\rho(h-z)\varphi_{1}^{0, h}(t, \frac{h-z}{\sqrt{\varepsilon^{*}}}), }\\ {u_{2}^{app}(t, x, z) = u_{2}^{0}(t, x, z)+\rho(z)\varphi_{2}^{0, 0}(t, x, \frac{z}{\sqrt{\varepsilon^{*}}}) +\rho(h-z)\varphi_{2}^{0, h}(t, x, \frac{h-z}{\sqrt{\varepsilon^{*}}}), }\\ {b_{1}^{app}(t, z) = b_{1}^{0}(t, z)+\rho(z)\psi_{1}^{0, 0}(t, \frac{z}{\sqrt{\varepsilon^{*}}}) +\rho(h-z)\psi_{1}^{0, h}(t, \frac{h-z}{\sqrt{\varepsilon^{*}}}), }\\ {b_{2}^{app}(t, x, z) = b_{2}^{0}(t, x, z)+\rho(z)\psi_{2}^{0, 0}(t, x, \frac{z}{\sqrt{\varepsilon^{*}}}) +\rho(h-z)\psi_{2}^{0, h}(t, x, \frac{h-z}{\sqrt{\varepsilon^{*}}}).} \end{array} \right. \end{equation}
(2.1)

这里 \varphi^{0, 0} \psi^{0, 0} 分别是速度场和磁场在边界 z = 0 附近的边界层函数, \varphi^{0, h} \psi^{0, h} 分别是速度场和磁场在边界 z = h 附近的边界层函数.令 Z = \frac{z}{\sqrt{\varepsilon^{*}}}, \ Z^{h} = \frac{h-z}{\sqrt{\varepsilon^{*}}} .且边界层函数满足:当 Z\rightarrow +\infty 时, \varphi^{0, 0}, \psi^{0, 0}\rightarrow 0 ;当 Z^{h}\rightarrow +\infty 时, \varphi^{0, h}, \psi^{0, h}\rightarrow 0 .其中 \sqrt{\varepsilon^{*}} 是边界层的厚度.

在整篇文章中, C 表示不依赖于 \varepsilon_{1}, \varepsilon_{2} \varepsilon^{*} 的常数,但是每行之间可能会不同.为了方便起见,我们不加以区分.现在给出本文的主要结果.

定理2.1  假设 \alpha_{1}^{i}(t), \beta_{1}^{i}(t)\in H^{1}(0, T) , \alpha_{2}^{i}(t, x), \beta_{2}^{i}(t, x)\in H^{1}(0, T;H^{4}(0, L)) , i = 0, h , m_{1}(z), n_{1}(z)\in H^{2}(0, h) , m_{2}(x, z), n_{2}(x, z)\in H^{4}(\Omega) , F_{1}(t, z), G_{1}(t, z)\in L^{2}(0, T;H^{2}(0, h)) , F_{2}(t, x, z), G_{2}(t, x, z)\in L^{2}(0, T;H^{4}(\Omega)) ,初始值和边界值满足零阶兼容性条件,并且假设当 \varepsilon_{1}\rightarrow 0, \varepsilon_{2}\rightarrow 0, \varepsilon^{*}\rightarrow 0 时,

\frac{\varepsilon_{1}}{\sqrt{\varepsilon^{*}}}\rightarrow 0, \frac{\varepsilon_{2}}{\sqrt{\varepsilon^{*}}}\rightarrow 0, \frac{|\varepsilon_{1}-\varepsilon^{*}|}{\varepsilon^{*}}\rightarrow 0, \frac{|\varepsilon_{2}-\varepsilon^{*}|}{\varepsilon^{*}}\rightarrow 0, \frac{|\varepsilon_{1}-\varepsilon^{*}|}{(\varepsilon^{*})^{\frac{1}{4}}(\varepsilon_{1})^{\frac{1}{2}}}\rightarrow 0, \frac{|\varepsilon_{2}-\varepsilon^{*}|}{(\varepsilon^{*})^{\frac{1}{4}}(\varepsilon_{2})^{\frac{1}{2}}}\rightarrow 0

成立,则有

\begin{eqnarray} &&\|u-u^{app}\|_{L^{\infty}(0, T;L^{2}(\Omega))}+\|b-b^{app}\|_{L^{\infty}(0, T;L^{2}(\Omega))}\\ &&+\sqrt{\varepsilon_{1}}\|u-u^{app}\|_{L^{2}(0, T;H^{1}(\Omega))} +\sqrt{\varepsilon_{2}}\|b-b^{app}\|_{L^{2}(0, T;H^{1}(\Omega))} \leq C\delta_{1}, \end{eqnarray}
(2.2)

其中

\delta_{1} = \max\bigg\{\varepsilon_{1}, \varepsilon_{2}, (\varepsilon^{*})^{\frac{3}{4}}, \frac{|\varepsilon_{1}-\varepsilon^{*}|}{(\varepsilon^{*})^{\frac{1}{4}}(\varepsilon_{1})^{\frac{1}{2}}} , \frac{|\varepsilon_{2}-\varepsilon^{*}|}{(\varepsilon^{*})^{\frac{1}{4}}(\varepsilon_{2})^{\frac{1}{2}}}\bigg\}.

利用将在第3部分中获得的边界层函数的衰减性质,我们可以进一步推断出

\begin{eqnarray} &&\|u-u^{0}\|_{L^{\infty}(0, T;L^{2}(\Omega))}+\|b-b^{0}\|_{L^{\infty}(0, T;L^{2}(\Omega))}\\ & \leq &C\max\bigg\{\varepsilon_{1}, \varepsilon_{2}, (\varepsilon^{*})^{\frac{1}{4}}, \frac{|\varepsilon_{1}-\varepsilon^{*}|}{(\varepsilon^{*})^{\frac{1}{4}}(\varepsilon_{1})^{\frac{1}{2}}}, \frac{|\varepsilon_{2}-\varepsilon^{*}|}{(\varepsilon^{*})^{\frac{1}{4}}(\varepsilon_{2})^{\frac{1}{2}}}\bigg\}. \end{eqnarray}
(2.3)

定理2.2  假设 \alpha_{1}^{i}(t), \beta_{1}^{i}(t)\in H^{1}(0, T) , \alpha_{2}^{i}(t, x), \beta_{2}^{i}(t, x)\in H^{1}(0, T;H^{6}(0, L)) , i = 0, h , m_{1}(z), n_{1}(z)\in H^{2}(0, h) , m_{2}(x, z), n_{2}(x, z)\in H^{6}(\Omega) , F_{1}(t, z), G_{1}(t, z)\in L^{2}(0, T;H^{2}(0, h)) , F_{2}(t, x, z), G_{2}(t, x, z)\in L^{2}(0, T;H^{6}(\Omega)) ,初始值和边界值满足零阶兼容性条件,并且假设当 \varepsilon_{1}\rightarrow 0, \varepsilon_{2}\rightarrow 0, \varepsilon^{*}\rightarrow 0 时,成立

\frac{\varepsilon_{1}}{\sqrt{\varepsilon^{*}}}\rightarrow 0, \frac{\varepsilon_{2}}{\sqrt{\varepsilon^{*}}}\rightarrow 0, \frac{\varepsilon_{1}}{\sqrt{\varepsilon_{2}}}\rightarrow 0, \frac{\varepsilon_{2}}{\sqrt{\varepsilon_{1}}}\rightarrow 0, \frac{(\varepsilon^{*})^{\frac{3}{4}}}{\sqrt{\varepsilon_{1}}}\rightarrow 0, \frac{(\varepsilon^{*})^{\frac{3}{4}}}{\sqrt{\varepsilon_{2}}}\rightarrow 0,

\frac{|\varepsilon_{1}-\varepsilon^{*}|}{\varepsilon^{*}}\rightarrow 0, \frac{|\varepsilon_{2}-\varepsilon^{*}|}{\varepsilon^{*}}\rightarrow 0, \frac{|\varepsilon_{1}-\varepsilon^{*}|}{(\varepsilon^{*})^{\frac{1}{4}}\varepsilon_{1}}\rightarrow 0, \frac{|\varepsilon_{2}-\varepsilon^{*}|}{(\varepsilon^{*})^{\frac{1}{4}}\varepsilon_{2}}\rightarrow 0,

\frac{|\varepsilon_{1}-\varepsilon^{*}|}{(\varepsilon^{*})^{\frac{1}{4}}(\varepsilon_{1}\varepsilon_{2})^{\frac{1}{2}}}\rightarrow 0, \frac{|\varepsilon_{2}-\varepsilon^{*}|}{(\varepsilon^{*})^{\frac{1}{4}}(\varepsilon_{1}\varepsilon_{2})^{\frac{1}{2}}}\rightarrow 0, \frac{|\varepsilon_{1}-\varepsilon^{*}|}{(\varepsilon^{*})^{\frac{3}{4}}(\varepsilon_{1})^{\frac{1}{2}}}\rightarrow 0, \frac{|\varepsilon_{2}-\varepsilon^{*}|}{(\varepsilon^{*})^{\frac{3}{4}}(\varepsilon_{2})^{\frac{1}{2}}}\rightarrow 0,

则有

\begin{eqnarray} \|u-u^{app}\|_{L^{\infty}((0, T)\times\Omega)}+\|b-b^{app}\|_{L^{\infty}((0, T)\times\Omega)} \leq C(\delta_{1}\delta_{2})^{\frac{1}{2}}, \end{eqnarray}
(2.4)

这里

\begin{eqnarray*} \delta_{2}& = &\max\bigg\{\sqrt{\varepsilon_{1}}, \sqrt{\varepsilon_{2}}, \frac{\varepsilon_{1}}{\sqrt{\varepsilon_{2}}}, \frac{\varepsilon_{2}}{\sqrt{\varepsilon_{1}}}, \frac{(\varepsilon^{*})^{\frac{3}{4}}}{\sqrt{\varepsilon_{1}}}, \frac{(\varepsilon^{*})^{\frac{3}{4}}}{\sqrt{\varepsilon_{2}}}, \frac{|\varepsilon_{1}-\varepsilon^{*}|}{(\varepsilon^{*})^{\frac{1}{4}}\varepsilon_{1}} , \frac{|\varepsilon_{2}-\varepsilon^{*}|}{(\varepsilon^{*})^{\frac{1}{4}}\varepsilon_{2}}, \\ && \frac{|\varepsilon_{1}-\varepsilon^{*}|}{(\varepsilon^{*})^{\frac{1}{4}}(\varepsilon_{1}\varepsilon_{2})^{\frac{1}{2}}} , \frac{|\varepsilon_{2}-\varepsilon^{*}|}{(\varepsilon^{*})^{\frac{1}{4}}(\varepsilon_{1}\varepsilon_{2})^{\frac{1}{2}}} , \frac{|\varepsilon_{1}-\varepsilon^{*}|}{(\varepsilon^{*})^{\frac{3}{4}}(\varepsilon_{1})^{\frac{1}{2}}}, \frac{|\varepsilon_{2}-\varepsilon^{*}|}{(\varepsilon^{*})^{\frac{3}{4}}(\varepsilon_{2})^{\frac{1}{2}}}\bigg\}. \end{eqnarray*}

注2.1  我们可以找到这样的 \varepsilon_{1}, \ \varepsilon_{2} \varepsilon^{*} 使得它们满足定理2.1和2.2的假设条件.例如,取 \varepsilon_{1} = \varepsilon^{\alpha}+\varepsilon^{\beta}, \ \varepsilon_{2} = \varepsilon^{\alpha}, \ \varepsilon^{*} = \varepsilon^{\alpha}, \ \beta>\frac{5}{4}\alpha>0;\ 或者取 \varepsilon_{1} = \varepsilon_{2} = \varepsilon^{*}.

在下一部分中,我们将研究边界层函数,因为其范数估计将有助于定理的证明.

3 边界层函数

在本部分中,我们将在定理关于 \varepsilon_{1}, \ \varepsilon_{2} \varepsilon^{*} 的假设条件下,利用能量方法得到边界层函数的范数估计.

我们发现(1.7)式可以改写为

\begin{eqnarray*} \left\{\begin{array}{ll} & {\partial_{t}u_{1}-\varepsilon^{*}\partial_{z}^{2}u_{1}+(\varepsilon^{*}-\varepsilon_{1})\partial_{z}^{2}u_{1} = F_{1}, }\\ & {\partial_{t}u_{2}-\varepsilon^{*}\partial_{z}^{2}u_{2}+(\varepsilon^{*}-\varepsilon_{1})\partial_{z}^{2}u_{2}-\varepsilon_{1}\partial_{x}^{2}u_{2} +u_{1}\partial_{x}u_{2}-b_{1}\partial_{x}b_{2} = F_{2}, }\\ & {\partial_{t}b_{1}-\varepsilon^{*}\partial_{z}^{2}b_{1}+(\varepsilon^{*}-\varepsilon_{2})\partial_{z}^{2}b_{1} = G_{1}, }\\ & {\partial_{t}b_{2}-\varepsilon^{*}\partial_{z}^{2}b_{2}+(\varepsilon^{*}-\varepsilon_{2})\partial_{z}^{2}b_{2} -\varepsilon_{2}\partial_{x}^{2}b_{2} +u_{1}\partial_{x}b_{2}-b_{1}\partial_{x}u_{2} = G_{2}.}\\ \end{array} \right. \end{eqnarray*}

将(2.1)式代入到上面的方程组中去,利用关于 u_{1}^{0}, \ u_{2}^{0}, \ b_{1}^{0} b_{2}^{0} 的方程组(1.10),以及定理2.1中关于 \varepsilon_{1}, \ \varepsilon_{2} \varepsilon^{*} 的假设条件:当 \varepsilon_{1}, \ \varepsilon_{2}, \ \varepsilon^{*}\rightarrow 0 时,有 \frac{|\varepsilon_{1}-\varepsilon^{*}|}{\varepsilon^{*}}, \ \frac{|\varepsilon_{2}-\varepsilon^{*}|}{\varepsilon^{*}}\rightarrow 0. 取零阶项,最终可以得到边界 z = 0 附近的边界层方程

\begin{equation} \left\{\begin{array}{ll} & {\partial_{t}\varphi_{1}^{0, 0}-\partial_{Z}^{2}\varphi_{1}^{0, 0} = 0, }\\ & {\partial_{t}\psi_{1}^{0, 0}-\partial_{Z}^{2}\psi_{1}^{0, 0} = 0, }\\ & \partial_{t}\varphi_{2}^{0, 0}-\partial_{Z}^{2}\varphi_{2}^{0, 0}+u_{1}^{0}|_{z = 0}\partial_{x}\varphi_{2}^{0, 0} +\varphi_{1}^{0, 0}\partial_{x}u_{2}^{0}|_{z = 0}+\varphi_{1}^{0, 0}\partial_{x}\varphi_{2}^{0, 0}\\& -b_{1}^{0}|_{z = 0}\partial_{x}\psi_{2}^{0, 0}-\psi_{1}^{0, 0}\partial_{x}b_{2}^{0}|_{z = 0}- \psi_{1}^{0, 0}\partial_{x}\psi_{2}^{0, 0} = 0, \\ & \partial_{t}\psi_{2}^{0, 0}-\partial_{Z}^{2}\psi_{2}^{0, 0}+u_{1}^{0}|_{z = 0}\partial_{x}\psi_{2}^{0, 0} +\varphi_{1}^{0, 0}\partial_{x}b_{2}^{0}|_{z = 0}+\varphi_{1}^{0, 0}\partial_{x}\psi_{2}^{0, 0}\\& -b_{1}^{0}|_{z = 0}\partial_{x}\varphi_{2}^{0, 0}-\psi_{1}^{0, 0}\partial_{x}u_{2}^{0}|_{z = 0}- \psi_{1}^{0, 0}\partial_{x}\varphi_{2}^{0, 0} = 0, \end{array} \right. \end{equation}
(3.1)

初始和边界条件为

\begin{eqnarray*} \left\{\begin{array}{ll} & {(\varphi_{1}^{0, 0}, \varphi_{2}^{0, 0})_{t = 0} = (0, 0), }\\ & {(\psi_{1}^{0, 0}, \psi_{2}^{0, 0})_{t = 0} = (0, 0), }\\ & {(\varphi_{1}^{0, 0}, \varphi_{2}^{0, 0})|_{Z = 0} = (\alpha_{1}^{0}(t)-u_{1}^{0}|_{z = 0}, \alpha_{2}^{0}(t, x)-u_{2}^{0}|_{z = 0}), }\\ & {(\psi_{1}^{0, 0}, \psi_{2}^{0, 0})|_{Z = 0} = (\beta_{1}^{0}(t)-b_{1}^{0}|_{z = 0}, \beta_{2}^{0}(t, x)-b_{2}^{0}|_{z = 0}), }\\ &{(\varphi_{1}^{0, 0}, \varphi_{2}^{0, 0})|_{Z = \infty} = (0, 0), }\\ &{(\psi_{1}^{0, 0}, \psi_{2}^{0, 0})|_{Z = \infty} = (0, 0), } \end{array} \right. \end{eqnarray*}

以及 z = h 附近的边界层方程

\begin{equation} \left\{\begin{array}{ll} & {\partial_{t}\varphi_{1}^{0, h}-\partial_{Z^{h}}^{2}\varphi_{1}^{0, h} = 0, }\\ & {\partial_{t}\psi_{1}^{0, h}-\partial_{Z^{h}}^{2}\psi_{1}^{0, h} = 0, }\\ & \partial_{t}\varphi_{2}^{0, h}-\partial_{Z^{h}}^{2}\varphi_{2}^{0, h}+u_{1}^{0}|_{z = h}\partial_{x}\varphi_{2}^{0, h} +\varphi_{1}^{0, h}\partial_{x}u_{2}^{0}|_{z = h}+\varphi_{1}^{0, h}\partial_{x}\varphi_{2}^{0, h}\\& -b_{1}^{0}|_{z = h}\partial_{x}\psi_{2}^{0, h}-\psi_{1}^{0, h}\partial_{x}b_{2}^{0}|_{z = h}- \psi_{1}^{0, h}\partial_{x}\psi_{2}^{0, h} = 0, \\ & \partial_{t}\psi_{2}^{0, h}-\partial_{Z^{h}}^{2}\psi_{2}^{0, h}+u_{1}^{0}|_{z = h}\partial_{x}\psi_{2}^{0, h} +\varphi_{1}^{0, h}\partial_{x}b_{2}^{0}|_{z = h}+\varphi_{1}^{0, h}\partial_{x}\psi_{2}^{0, h}\\& -b_{1}^{0}|_{z = h}\partial_{x}\varphi_{2}^{0, h}-\psi_{1}^{0, h}\partial_{x}u_{2}^{0}|_{z = h}- \psi_{1}^{0, h}\partial_{x}\varphi_{2}^{0, h} = 0.\\ \end{array} \right. \end{equation}
(3.2)

初始和边界条件为

\begin{eqnarray*} \left\{\begin{array}{ll} & {(\varphi_{1}^{0, h}, \varphi_{2}^{0, h})_{t = 0} = (0, 0), }\\ & {(\psi_{1}^{0, h}, \psi_{2}^{0, h})_{t = 0} = (0, 0), }\\ & {(\varphi_{1}^{0, h}, \varphi_{2}^{0, h})|_{Z^{h} = 0} = (\alpha_{1}^{h}(t)-u_{1}^{0}|_{z = h}, \alpha_{2}^{h}(t, x)-u_{2}^{0}|_{z = h}), }\\ & {(\psi_{1}^{0, h}, \psi_{2}^{0, h})|_{Z^{h} = 0} = (\beta_{1}^{h}(t)-b_{1}^{0}|_{z = h}, \beta_{2}^{h}(t, x)-b_{2}^{0}|_{z = h}), }\\ &{(\varphi_{1}^{0, h}, \varphi_{2}^{0, h})|_{Z^{h} = \infty} = (0, 0), }\\ &{(\psi_{1}^{0, h}, \psi_{2}^{0, h})|_{Z^{h} = \infty} = (0, 0).}\\ \end{array} \right. \end{eqnarray*}

很容易获得上述方程组的适定性.由于方程组(3.1)和方程组(3.2)的对称性,我们仅处理关于 \varphi^{0, 0} \psi^{0, 0} 的方程组(3.1),继而可以得到关于 \varphi^{0, h} \psi^{0, h} 的相应结果.

命题3.1  假设 \alpha_{1}^{0}(t)\in H^{1}(0, T), \ m_{1}(z)\in H^{1}(0, h), \ F_{1}(t, z)\in L^{2}(0, T;H^{1}(0, h)) ,满足零阶兼容性条件,则成立

\begin{equation} \|\varphi_{1}^{0, 0}\|_{L^{\infty}(0, T;L^{2}(0, +\infty))}+\|\partial_{Z}\varphi_{1}^{0, 0}\|_{L^{2}((0, T)\times(0, +\infty))} \leq C, \end{equation}
(3.3)

\begin{equation} \|\partial_{Z}\varphi_{1}^{0, 0}\|_{L^{\infty}(0, T;L^{2}(0, +\infty))}+\|\partial_{Z}^{2}\varphi_{1}^{0, 0}\|_{L^{2}((0, T)\times(0, +\infty))} \leq C, \end{equation}
(3.4)

\begin{equation} \|\varphi_{1}^{0, 0}\|_{L^{\infty}((0, T)\times(0, +\infty))} \leq C, \end{equation}
(3.5)

\begin{equation} \|\langle Z\rangle^{l}\varphi_{1}^{0, 0}\|_{L^{\infty}(0, T;L^{2}(0, +\infty))}+\|\langle Z\rangle^{l}\partial_{Z}\varphi_{1}^{0, 0}\|_{L^{2}((0, T)\times(0, +\infty))} \leq C, \end{equation}
(3.6)

其中 \langle Z\rangle\triangleq\sqrt{Z^{2}+1}, \ l\in{{\Bbb Z}_{+}} ,以及 C 是依赖于 T, \ l, \ \|\alpha_{1}^{0}(t)\|_{H^{1}(0, T)}, \ \|m_{1}(z)\|_{H^{1}(0, h)} \|F_{1}(t, z)\|_{L^{2}(0, T;H^{1}(0, h))} 的正常数.

  令 w_{1}(t, Z) = \varphi_{1}^{0, 0}(t, Z)-(\alpha_{1}^{0}(t)-u_{1}^{0}|_{z = 0}){\rm e}^{-Z} ,由方程组(3.1)的第一个方程可得

\begin{equation} \left\{\begin{array}{ll} &{\partial_{t}w_{1}-\partial_{Z}^{2}w_{1} = (\alpha_{1}^{0}-u_{1}^{0}|_{z = 0}-\partial_{t}\alpha_{1}^{0}+F_{1}|_{z = 0}){\rm e}^{-Z}, }\\ &w_{1}|_{Z = 0} = w_{1}|_{Z = +\infty} = 0, \\ & w_{1}|_{t = 0} = 0.\\ \end{array} \right. \end{equation}
(3.7)

上述方程两端同时乘上 w_{1} ,然后在 (0, +\infty) 上积分,可以得到

\begin{eqnarray} && \frac{1}{2}\frac{\rm d}{{\rm d}t}\|w_{1}\|_{L^{2}(0, +\infty)}^{2}+\|\partial_{Z}w_{1}\|_{L^{2}(0, +\infty)}^{2}\\ & = &\int_{0}^{+\infty}(\alpha_{1}^{0}-u_{1}^{0}|_{z = 0}-\partial_{t}\alpha_{1}^{0}+F_{1}|_{z = 0}){\rm e}^{-Z}w_{1}{\rm d}Z\\ & \leq&(|\alpha_{1}^{0}|+|u_{1}^{0}|_{z = 0}|+|\partial_{t}\alpha_{1}^{0}|+|F_{1}|_{z = 0}|)\|{\rm e}^{-Z}\|_{L^{2}(0, +\infty)} \|w_{1}\|_{L^{2}(0, +\infty)}\\ & \leq & 2\|w_{1}\|^{2}_{L^{2}(0, +\infty)}+\frac{1}{4}(|\alpha_{1}^{0}|^{2}+|u_{1}^{0}|_{z = 0}|^{2}+|\partial_{t}\alpha_{1}^{0}|^{2}+|F_{1}|_{z = 0}|^{2}). \end{eqnarray}
(3.8)

利用Gronwall不等式,我们有

\begin{eqnarray} && \|w_{1}\|_{L^{\infty}(0, T;L^{2}(0, +\infty))}^{2}+\|\partial_{Z}w_{1}\|_{L^{2}((0, T)\times(0, +\infty))}^{2}\\ & \leq & C(T)(\|\alpha_{1}^{0}\|^{2}_{L^{2}(0, T)}+\|u_{1}^{0}|_{z = 0}\|^{2}_{L^{2}(0, T)}+\|\partial_{t}\alpha_{1}^{0}\|^{2}_{L^{2}(0, T)} +\|F_{1}|_{z = 0}\|^{2}_{L^{2}(0, T)})\\ & \leq & C(T)(\|\alpha_{1}^{0}\|^{2}_{H^{1}(0, T)}+|m_{1}(0)|^{2} +\|F_{1}|_{z = 0}\|^{2}_{L^{2}(0, T)})\\ & \leq & C(T)(\|\alpha_{1}^{0}\|^{2}_{H^{1}(0, T)}+\|m_{1}\|_{L^{\infty}(0, h)}^{2} +\|F_{1}\|^{2}_{L^{2}(0, T;L^{\infty}(0, h))})\\ & \leq & C(T)(\|\alpha_{1}^{0}\|^{2}_{H^{1}(0, T)}+\|m_{1}\|_{H^{1}(0, h)}^{2} +\|F_{1}\|^{2}_{L^{2}(0, T;H^{1}(0, h))}), \end{eqnarray}
(3.9)

这里用到了Sobolev嵌入定理: H^{1}(0, h)\circlearrowleft L^{\infty}(0, h) .

在方程(3.7)两端同时乘上 -\partial_{Z}^{2}w_{1} ,然后在 (0, +\infty) 上积分,有

\begin{eqnarray} && \frac{1}{2}\frac{\rm d}{{\rm d}t}\|\partial_{Z}w_{1}\|_{L^{2}(0, +\infty)}^{2}+\|\partial_{Z}^{2}w_{1}\|_{L^{2}(0, +\infty)}^{2}\\ & = &\int_{0}^{+\infty}(\alpha_{1}^{0}-u_{1}^{0}|_{z = 0}-\partial_{t}\alpha_{1}^{0}+F_{1}|_{z = 0}){\rm e}^{-Z}(-\partial_{Z}^{2}w_{1}){\rm d}Z\\ & \leq&(|\alpha_{1}^{0}|+|u_{1}^{0}|_{z = 0}|+|\partial_{t}\alpha_{1}^{0}|+|F_{1}|_{z = 0}|)\|{\rm e}^{-Z}\|_{L^{2}(0, +\infty)} \|\partial_{Z}^{2}w_{1}\|_{L^{2}(0, +\infty)}\\ & \leq & \frac{1}{2}\|\partial_{Z}^{2}w_{1}\|^{2}_{L^{2}(0, +\infty)}+(|\alpha_{1}^{0}|^{2}+|u_{1}^{0}|_{z = 0}|^{2}+|\partial_{t}\alpha_{1}^{0}|^{2}+|F_{1}|_{z = 0}|^{2}). \end{eqnarray}
(3.10)

对上述不等式关于时间积分,可以得到

\begin{eqnarray} && \|\partial_{Z}w_{1}\|_{L^{\infty}(0, T;L^{2}(0, +\infty))}^{2}+\|\partial_{Z}^{2}w_{1}\|_{L^{2}((0, T)\times(0, +\infty))}^{2}\\ & \leq & 4(\|\alpha_{1}^{0}\|^{2}_{L^{2}(0, T)}+\|u_{1}^{0}|_{z = 0}\|^{2}_{L^{2}(0, T)}+\|\partial_{t}\alpha_{1}^{0}\|^{2}_{L^{2}(0, T)} +\|F_{1}|_{z = 0}\|^{2}_{L^{2}(0, T)})\\ & \leq & C(\|\alpha_{1}^{0}\|^{2}_{H^{1}(0, T)}+\|m_{1}\|_{H^{1}(0, h)}^{2} +\|F_{1}\|^{2}_{L^{2}(0, T;H^{1}(0, h))}). \end{eqnarray}
(3.11)

因此

\begin{eqnarray*} \label{5-24}\nonumber \|w_{1}\|_{L^{\infty}((0, T)\times(0, +\infty))} &\leq& \sqrt{2} \|w_{1}\|^{\frac{1}{2}}_{L^{\infty}(0, T;L^{2}(0, +\infty))}\|\partial_{Z}w_{1}\|^{\frac{1}{2}}_{L^{\infty}(0, T;L^{2}(0, +\infty))} \\\nonumber &\leq & C(T)(\|\alpha_{1}^{0}\|_{H^{1}(0, T)}+\|m_{1}\|_{H^{1}(0, h)} +\|F_{1}\|_{L^{2}(0, T;H^{1}(0, h))}). \end{eqnarray*}

事实上,由最大值原理也可以得到 w_{1} L^{\infty}((0, T)\times(0, +\infty)) 范数估计.

接下来,在(3.7)式两端同时乘上 \langle Z\rangle ^{2l} w_{1} ,并且在 (0, +\infty) 上积分,得到

\begin{eqnarray} &&\frac{1}{2}\frac{\rm d}{{\rm d}t}\|\langle Z\rangle^{l}w_{1}\|_{L^{2}(0, +\infty)}^{2}+\|\langle Z\rangle^{l}\partial_{Z}w_{1}\|_{L^{2}(0, +\infty)}^{2}\\& = &-l\int_{0}^{+\infty}Z(1+Z^{2})^{l-1}\partial_{Z}(w_{1})^{2}{\rm d}Z \\&&+\int_{0}^{+\infty}(\alpha_{1}^{0}-u_{1}^{0}|_{z = 0}-\partial_{t}\alpha_{1}^{0}+F_{1}|_{z = 0}){\rm e}^{-Z}\langle Z\rangle ^{2l}w_{1}{\rm d}Z\\& = &l\int_{0}^{+\infty}[2(l-1)(1+Z^{2})^{l-2}Z^{2}+(1+Z^{2})^{l-1}]w_{1}^{2}{\rm d}Z\\&& +\int_{0}^{+\infty}(\alpha_{1}^{0}-u_{1}^{0}|_{z = 0}-\partial_{t}\alpha_{1}^{0}+F_{1}|_{z = 0}){\rm e}^{-Z}\langle Z\rangle ^{2l}w_{1}{\rm d}Z\\ & \leq & |\alpha_{1}^{0}-u_{1}^{0}|_{z = 0}-\partial_{t}\alpha_{1}^{0}+F_{1}|_{z = 0}|\|\langle Z\rangle ^{l} {\rm e}^{-Z}\|_{L^{2}(0, +\infty)} \|\langle Z\rangle^{l}w_{1}\|_{L^{2}(0, +\infty)}\\ &&+l(2l-1)\|\langle Z\rangle ^{l}w_{1}\|^{2}_{L^{2}(0, +\infty)}\\ & \leq & C(l)\|\langle Z\rangle^{l}w_{1}\|^{2}_{L^{2}(0, +\infty)}+\frac{1}{2}(|\alpha_{1}^{0}|^{2}+|u_{1}^{0}|_{z = 0}|^{2}+|\partial_{t}\alpha_{1}^{0}|^{2}+|F_{1}|_{z = 0}|^{2}). \end{eqnarray}
(3.12)

由Gronwall不等式可以获得

\begin{eqnarray} && \|\langle Z\rangle^{l}w_{1}\|_{L^{\infty}(0, T;L^{2}(0, +\infty))}^{2}+\|\langle Z\rangle^{l}\partial_{Z}w_{1}\|_{L^{2}((0, T)\times(0, +\infty))}^{2}\\ & \leq & C(T, l)(\|\alpha_{1}^{0}\|^{2}_{H^{1}(0, T)}+\|m_{1}\|_{H^{1}(0, h)}^{2} +\|F_{1}\|^{2}_{L^{2}(0, T;H^{1}(0, h))}). \end{eqnarray}
(3.13)

最后,结合(3.9), (3.11)–(3.13)式以及 w_{1} 的定义,可以立即得到(3.3)–(3.6)式.证毕.

因为关于 \psi_{1}^{0, 0} 的方程同 \varphi_{1}^{0, 0} 的类似,所以可以得到如下命题.

命题3.2  假设 \beta_{1}^{0}(t)\in H^{1}(0, T), \ n_{1}(z)\in H^{1}(0, h), \ G_{1}(t, z)\in L^{2}(0, T;H^{1}(0, h)) ,并且满足零阶兼容性条件,则有

\begin{equation} \|\psi_{1}^{0, 0}\|_{L^{\infty}(0, T;L^{2}(0, +\infty))}+\|\partial_{Z}\psi_{1}^{0, 0}\|_{L^{2}((0, T)\times(0, +\infty))} \leq C, \end{equation}
(3.14)

\begin{equation} \|\partial_{Z}\psi_{1}^{0, 0}\|_{L^{\infty}(0, T;L^{2}(0, +\infty))}+\|\partial_{Z}^{2}\psi_{1}^{0, 0}\|_{L^{2}((0, T)\times(0, +\infty))} \leq C, \end{equation}
(3.15)

\begin{equation} \|\psi_{1}^{0, 0}\|_{L^{\infty}((0, T)\times(0, +\infty))} \leq C, \end{equation}
(3.16)

\begin{equation} \|\langle Z\rangle^{l}\psi_{1}^{0, 0}\|_{L^{\infty}(0, T;L^{2}(0, +\infty))}+\|\langle Z\rangle^{l}\partial_{Z}\psi_{1}^{0, 0}\|_{L^{2}((0, T)\times(0, +\infty))} \leq C, \end{equation}
(3.17)

这里 l\in{{\Bbb Z}_{+}} ,以及 C 是依赖于 T, l, \|\beta_{1}^{0}(t)\|_{H^{1}(0, T)}, \|n_{1}(z)\|_{H^{1}(0, h)} \|G_{1}(t, z)\|_{L^{2}(0, T;H^{1}(0, h))} 的正常数.

在下面的命题中,我们将得到 \varphi_{2}^{0, 0} \psi_{2}^{0, 0} 的范数估计.

命题3.3  假设 \alpha_{1}^{0}(t), \beta_{1}^{0}(t)\in H^{1}(0, T) , \alpha_{2}^{0}(t, x), \beta_{2}^{0}(t, x)\in H^{1}(0, T;H^{3}(0, L)) , m_{1}(z), n_{1}(z)\in H^{1}(0, h) , m_{2}(x, z), n_{2}(x, z)\in H^{3}(\Omega) , F_{1}(t, z), G_{1}(t, z)\in L^{2}(0, T;H^{1}(0, h)) , F_{2}(t, x, z), G_{2}(t, x, z)\in L^{2}(0, T;H^{3}(\Omega)) ,初始值和边界值满足零阶兼容性条件,则有

\begin{eqnarray} &&\|\varphi_{2}^{0, 0}\|_{L^{\infty}(0, T;L^{2}(\Omega_{\infty}))}+\|\psi_{2}^{0, 0}\|_{L^{\infty}(0, T;L^{2}(\Omega_{\infty}))} +\|\partial_{Z}\varphi_{2}^{0, 0}\|_{L^{2}((0, T)\times\Omega_{\infty})} \\ &&+\|\partial_{Z}\psi_{2}^{0, 0}\|_{L^{2}((0, T)\times\Omega_{\infty})} \leq C, \end{eqnarray}
(3.18)

\begin{eqnarray} &&\|\partial_{Z}\varphi_{2}^{0, 0}\|_{L^{\infty}(0, T;L^{2}(\Omega_{\infty}))}+\|\partial_{Z}\psi_{2}^{0, 0}\|_{L^{\infty}(0, T;L^{2}(\Omega_{\infty}))} +\|\partial_{Z}^{2}\varphi_{2}^{0, 0}\|_{L^{2}((0, T)\times\Omega_{\infty})} \\ &&+\|\partial_{Z}^{2}\psi_{2}^{0, 0}\|_{L^{2}((0, T)\times\Omega_{\infty})} \leq C, \end{eqnarray}
(3.19)

\begin{eqnarray} &&\|\varphi_{2}^{0, 0}\|_{L^{\infty}((0, T)\times\Omega_{\infty})} +\|\psi_{2}^{0, 0}\|_{L^{\infty}((0, T)\times\Omega_{\infty})} \leq C, \end{eqnarray}
(3.20)

\begin{eqnarray} &&\|\langle Z\rangle^{l}\varphi_{2}^{0, 0}\|_{L^{\infty}(0, T;L^{2}(\Omega_{\infty}))}+\|\langle Z\rangle^{l}\psi_{2}^{0, 0}\|_{L^{\infty}(0, T;L^{2}(\Omega_{\infty}))}\\ &&+ \|\langle Z\rangle^{l}\partial_{Z}\varphi_{2}^{0, 0}\|_{L^{2}((0, T)\times\Omega_{\infty})} +\|\langle Z\rangle^{l}\partial_{Z}\psi_{2}^{0, 0}\|_{L^{2}((0, T)\times\Omega_{\infty})} \leq C, \end{eqnarray}
(3.21)

这里 \Omega_{\infty}\triangleq [0, L]\times[0, +\infty), l\in{{\Bbb Z}_{+}} 以及 C 是依赖于 T, l, \|\alpha_{1}^{0}(t)\|_{H^{1}(0, T)}, \|\beta_{1}^{0}(t)\|_{H^{1}(0, T)}, \|\alpha_{2}^{0}(t, x)\|_{H^{1}(0, T;H^{3}(0, L))}, \|\beta_{2}^{0}(t, x)\|_{H^{1}(0, T;H^{3}(0, L))}, \|m_{1}(z)\|_{H^{1}(0, h)}, \|n_{1}(z)\|_{H^{1}(0, h)}, \|m_{2}(x, z)\|_{H^{3}(\Omega)}, \|n_{2}(x, z)\|_{H^{3}(\Omega)}, \|F_{1}(t, z)\|_{L^{2}(0, T;H^{1}(0, h))}, \|G_{1}(t, z)\|_{L^{2}(0, T;H^{1}(0, h))}, \|F_{2}(t, x, z)\|_{L^{2}(0, T;H^{3}(\Omega))} \|G_{2}(t, x, z)\|_{L^{2}(0, T;H^{3}(\Omega))} 的正常数.

  定义

w_{2}(t, x, Z) = \varphi_{2}^{0, 0}(t, x, Z)-(\alpha_{2}^{0}(t, x)-u_{2}^{0}|_{z = 0}){\rm e}^{-Z},

w_{3}(t, x, Z) = \psi_{2}^{0, 0}(t, x, Z)-(\beta_{2}^{0}(t, x)-b_{2}^{0}|_{z = 0}){\rm e}^{-Z}.

利用方程组(3.1)的第三个和第四个方程,可以得到

\begin{eqnarray} \left\{\begin{array}{ll} &\partial_{t}w_{2}-\partial_{Z}^{2}w_{2}+(u_{1}^{0}|_{z = 0}+\varphi_{1}^{0, 0})\partial_{x}w_{2} -(b_{1}^{0}|_{z = 0}+\psi_{1}^{0, 0})\partial_{x}w_{3} \\& = \Gamma_{1}-\varphi_{1}^{0, 0}\partial_{x}u_{2}^{0}|_{z = 0}+\psi_{1}^{0, 0}\partial_{x}b_{2}^{0}|_{z = 0}, \\ &\partial_{t}w_{3}-\partial_{Z}^{2}w_{3}+(u_{1}^{0}|_{z = 0}+\varphi_{1}^{0, 0})\partial_{x}w_{3} -(b_{1}^{0}|_{z = 0}+\psi_{1}^{0, 0})\partial_{x}w_{2} \\& = \Gamma_{2}-\varphi_{1}^{0, 0}\partial_{x}b_{2}^{0}|_{z = 0}+\psi_{1}^{0, 0}\partial_{x}u_{2}^{0}|_{z = 0}, \\ &w_{2}|_{Z = 0} = w_{2}|_{Z = +\infty} = 0, \\ &w_{3}|_{Z = 0} = w_{3}|_{Z = +\infty} = 0, \\ & w_{2}|_{t = 0} = w_{3}|_{t = 0} = 0. \end{array} \right. \end{eqnarray}
(3.22)

这里

\begin{eqnarray*} \Gamma_{1}(t, x, Z)& = &(-\partial_{t}\alpha_{2}^{0}+F_{2}|_{z = 0}+\alpha_{2}^{0}-u_{2}^{0}|_{z = 0}- u_{1}^{0}|_{z = 0}\partial_{x}\alpha_{2}^{0}-\varphi_{1}^{0, 0}\partial_{x}\alpha_{2}^{0} \\&&+\varphi_{1}^{0, 0}\partial_{x}u_{2}^{0}|_{z = 0}+b_{1}^{0}|_{z = 0}\partial_{x}\beta_{2}^{0} +\psi_{1}^{0, 0}\partial_{x}\beta_{2}^{0}-\psi_{1}^{0, 0}\partial_{x}b_{2}^{0}|_{z = 0}){\rm e}^{-Z}, \\ \Gamma_{2}(t, x, Z)& = &(-\partial_{t}\beta_{2}^{0}+G_{2}|_{z = 0}+\beta_{2}^{0}-b_{2}^{0}|_{z = 0}- u_{1}^{0}|_{z = 0}\partial_{x}\beta_{2}^{0}-\varphi_{1}^{0, 0}\partial_{x}\beta_{2}^{0} \\&&+\varphi_{1}^{0, 0}\partial_{x}b_{2}^{0}|_{z = 0}+b_{1}^{0}|_{z = 0}\partial_{x}\alpha_{2}^{0} +\psi_{1}^{0, 0}\partial_{x}\alpha_{2}^{0}-\psi_{1}^{0, 0}\partial_{x}u_{2}^{0}|_{z = 0}){\rm e}^{-Z}. \end{eqnarray*}

第1步  在方程组(3.22)的第一个方程两端同时乘上 w_{2} ,第二个方程两端同时乘上 w_{3} ,然后在 \Omega_{\infty} 上积分,可以得到

\begin{eqnarray} && \frac{1}{2}\frac{\rm d}{{\rm d}t}(\|w_{2}\|_{L^{2}(\Omega_{\infty})}^{2}+\|w_{3}\|_{L^{2}(\Omega_{\infty})}^{2}) +\|\partial_{Z}w_{2}\|_{L^{2}(\Omega_{\infty})}^{2}+\|\partial_{Z}w_{3}\|_{L^{2}(\Omega_{\infty})}^{2}\\& = &\int_{\Omega_{\infty}}(\Gamma_{1}w_{2}+\Gamma_{2}w_{3}){\rm d}x{\rm d}Z +\int_{\Omega_{\infty}}(-\varphi_{1}^{0, 0}\partial_{x}u_{2}^{0}|_{z = 0}+\psi_{1}^{0, 0}\partial_{x}b_{2}^{0}|_{z = 0})w_{2}{\rm d}x{\rm d}Z\\ && +\int_{\Omega_{\infty}}(-\varphi_{1}^{0, 0}\partial_{x}b_{2}^{0}|_{z = 0}+\psi_{1}^{0, 0}\partial_{x}u_{2}^{0}|_{z = 0})w_{3}{\rm d}x{\rm d}Z \\& \leq&(\|\partial_{t}\alpha_{2}^{0}\|_{L^{2}(0, L)}+\|F_{2}|_{z = 0}\|_{L^{2}(0, L)}+\|\alpha_{2}^{0}\|_{L^{2}(0, L)} +\|u_{2}^{0}|_{z = 0}\|_{L^{2}(0, L)}\\&&+|u_{1}^{0}|_{z = 0}|\|\partial_{x}\alpha_{2}^{0}\|_{L^{2}(0, L)} +\|\varphi_{1}^{0, 0}\|_{L^{\infty}(0, +\infty)}\|\partial_{x}\alpha_{2}^{0}\|_{L^{2}(0, L)} +\|\varphi_{1}^{0, 0}\|_{L^{\infty}(0, +\infty)}\\&&\times\|\partial_{x}u_{2}^{0}|_{z = 0}\|_{L^{2}(0, L)} +|b_{1}^{0}|_{z = 0}|\|\partial_{x}\beta_{2}^{0}\|_{L^{2}(0, L)} +\|\psi_{1}^{0, 0}\|_{L^{\infty}(0, +\infty)}\|\partial_{x}\beta_{2}^{0}\|_{L^{2}(0, L)} \\&&+\|\psi_{1}^{0, 0}\|_{L^{\infty}(0, +\infty)}\|\partial_{x}b_{2}^{0}|_{z = 0}\|_{L^{2}(0, L)})\|{\rm e}^{-Z}\|_{L^{2}(0, +\infty)} \|w_{2}\|_{L^{2}(\Omega_{\infty})} \\&&+(\|\partial_{t}\beta_{2}^{0}\|_{L^{2}(0, L)}+\|G_{2}|_{z = 0}\|_{L^{2}(0, L)}+\|\beta_{2}^{0}\|_{L^{2}(0, L)} +\|b_{2}^{0}|_{z = 0}\|_{L^{2}(0, L)}\\&&+|u_{1}^{0}|_{z = 0}|\|\partial_{x}\beta_{2}^{0}\|_{L^{2}(0, L)} +\|\varphi_{1}^{0, 0}\|_{L^{\infty}(0, +\infty)}\|\partial_{x}\beta_{2}^{0}\|_{L^{2}(0, L)} +\|\varphi_{1}^{0, 0}\|_{L^{\infty}(0, +\infty)} \\&&\times\|\partial_{x}b_{2}^{0}|_{z = 0}\|_{L^{2}(0, L)} +|b_{1}^{0}|_{z = 0}|\|\partial_{x}\alpha_{2}^{0}\|_{L^{2}(0, L)} +\|\psi_{1}^{0, 0}\|_{L^{\infty}(0, +\infty)}\|\partial_{x}\alpha_{2}^{0}\|_{L^{2}(0, L)} \\&&+\|\psi_{1}^{0, 0}\|_{L^{\infty}(0, +\infty)}\|\partial_{x}u_{2}^{0}|_{z = 0}\|_{L^{2}(0, L)})\|{\rm e}^{-Z}\|_{L^{2}(0, +\infty)} \|w_{3}\|_{L^{2}(\Omega_{\infty})}\\&&+(\|\partial_{x}u_{2}^{0}|_{z = 0}\|_{L^{2}(0, L)}\|\varphi_{1}^{0, 0}\|_{L^{2}(0, +\infty)} +\|\partial_{x}b_{2}^{0}|_{z = 0}\|_{L^{2}(0, L)}\|\psi_{1}^{0, 0}\|_{L^{2}(0, +\infty)}) \|w_{2}\|_{L^{2}(\Omega_{\infty})} \\&&+(\|\partial_{x}b_{2}^{0}|_{z = 0}\|_{L^{2}(0, L)}\|\varphi_{1}^{0, 0}\|_{L^{2}(0, +\infty)} +\|\partial_{x}u_{2}^{0}|_{z = 0}\|_{L^{2}(0, L)}\|\psi_{1}^{0, 0}\|_{L^{2}(0, +\infty)}) \|w_{3}\|_{L^{2}(\Omega_{\infty})}\\& \leq & 6(\|w_{2}\|^{2}_{L^{2}(\Omega_{\infty})}+\|w_{3}\|^{2}_{L^{2}(\Omega_{\infty})}) +\frac{1}{2}(\|\alpha_{2}^{0}\|^{2}_{L^{2}(0, L)}+\|\partial_{t}\alpha_{2}^{0}\|^{2}_{L^{2}(0, L)} +\|\beta_{2}^{0}\|^{2}_{L^{2}(0, L)}\\&&+\|\partial_{t}\beta_{2}^{0}\|^{2}_{L^{2}(0, L)} +\|F_{2}\|^{2}_{H^{1}(\Omega)}+\|G_{2}\|^{2}_{H^{1}(\Omega)} +\|u_{2}^{0}\|^{2}_{H^{1}(\Omega)}+\|b_{2}^{0}\|^{2}_{H^{1}(\Omega)} \\&&+\|u_{1}^{0}\|^{2}_{H^{1}(0, h)}\|\alpha_{2}^{0}\|^{2}_{H^{1}(0, L)} +\|u_{1}^{0}\|^{2}_{H^{1}(0, h)}\|\beta_{2}^{0}\|^{2}_{H^{1}(0, L)} +\|\varphi_{1}^{0, 0}\|^{2}_{L^{\infty}(0, +\infty)}\|\alpha_{2}^{0}\|^{2}_{H^{1}(0, L)} \\&&+\|\varphi_{1}^{0, 0}\|^{2}_{L^{\infty}(0, +\infty)}\|\beta_{2}^{0}\|^{2}_{H^{1}(0, L)} +\|\varphi_{1}^{0, 0}\|^{2}_{L^{\infty}(0, +\infty)}\|u_{2}^{0}\|^{2}_{H^{1}(\Omega)} +\|\varphi_{1}^{0, 0}\|^{2}_{L^{\infty}(0, +\infty)}\|b_{2}^{0}\|^{2}_{H^{1}(\Omega)} \\&&+\|b_{1}^{0}\|^{2}_{H^{1}(0, h)}\|\beta_{2}^{0}\|^{2}_{H^{1}(0, L)} +\|b_{1}^{0}\|^{2}_{H^{1}(0, h)}\|\alpha_{2}^{0}\|^{2}_{H^{1}(0, L)} +\|\psi_{1}^{0, 0}\|^{2}_{L^{\infty}(0, +\infty)}\|\beta_{2}^{0}\|^{2}_{H^{1}(0, L)} \\&&+\|\psi_{1}^{0, 0}\|^{2}_{L^{\infty}(0, +\infty)}\|\alpha_{2}^{0}\|^{2}_{H^{1}(0, L)} +\|\psi_{1}^{0, 0}\|^{2}_{L^{\infty}(0, +\infty)}\|b_{2}^{0}\|^{2}_{H^{1}(\Omega)} +\|\psi_{1}^{0, 0}\|^{2}_{L^{\infty}(0, +\infty)}\|u_{2}^{0}\|^{2}_{H^{1}(\Omega)} \\&&+\|\varphi_{1}^{0, 0}\|^{2}_{L^{2}(0, +\infty)}\|u_{2}^{0}\|^{2}_{H^{1}(\Omega)} +\|\varphi_{1}^{0, 0}\|^{2}_{L^{2}(0, +\infty)}\|b_{2}^{0}\|^{2}_{H^{1}(\Omega)} +\|\psi_{1}^{0, 0}\|^{2}_{L^{2}(0, +\infty)}\|b_{2}^{0}\|^{2}_{H^{1}(\Omega)} \\ &&+\|\psi_{1}^{0, 0}\|^{2}_{L^{2}(0, +\infty)}\|u_{2}^{0}\|^{2}_{H^{1}(\Omega)}). \end{eqnarray}
(3.23)

应用Gronwall不等式可以获得

\begin{eqnarray} &&\|w_{2}\|^{2}_{L^{\infty}(0, T;L^{2}(\Omega_{\infty}))}+\|w_{3}\|^{2}_{L^{\infty}(0, T;L^{2}(\Omega_{\infty}))} \\ &&+\|\partial_{Z}w_{2}\|^{2}_{L^{2}((0, T)\times\Omega_{\infty})} +\|\partial_{Z}w_{3}\|^{2}_{L^{2}((0, T)\times\Omega_{\infty})} \leq C_{1}, \end{eqnarray}
(3.24)

这里用到了命题3.1和3.2的结论,以及 C_{1} 是依赖于 T, \ \|\alpha_{1}^{0}\|_{H^{1}(0, T)}, \|\beta_{1}^{0}\|_{H^{1}(0, T)}, \|\alpha_{2}^{0}\|_{H^{1}((0, T)\times(0, L))}, \|\beta_{2}^{0}\|_{H^{1}((0, T)\times(0, L))}, \|m_{1}\|_{H^{1}(0, h)}, \|n_{1}\|_{H^{1}(0, h)}, \|m_{2}\|_{H^{1}(\Omega)}, \|n_{2}\|_{H^{1}(\Omega)}, \|F_{1}\|_{L^{2}(0, T;H^{1}(0, h))}, \|G_{1}\|_{L^{2}(0, T;H^{1}(0, h))}, \|F_{2}\|_{L^{2}(0, T;H^{1}(\Omega))} \|G_{2}\|_{L^{2}(0, T;H^{1}(\Omega))} 的正常数.

第2步  对方程组(3.22)作用算子 \partial_{x} ,我们会发现它与方程组(3.22)具有类似的结构.因此,利用同第1步类似的方法,可以得到

\begin{eqnarray} &&\|\partial_{x}w_{2}\|^{2}_{L^{\infty}(0, T;L^{2}(\Omega_{\infty}))}+\|\partial_{x}w_{3}\|^{2}_{L^{\infty}(0, T;L^{2}(\Omega_{\infty}))} \\ &&+\|\partial_{x}\partial_{Z}w_{2}\|^{2}_{L^{2}((0, T)\times\Omega_{\infty})} +\|\partial_{x}\partial_{Z}w_{3}\|^{2}_{L^{2}((0, T)\times\Omega_{\infty})} \leq C_{2}, \end{eqnarray}
(3.25)

其中 C_{2} 是依赖于 T, \ \|\alpha_{1}^{0}\|_{H^{1}(0, T)}, \|\beta_{1}^{0}\|_{H^{1}(0, T)}, \|\alpha_{2}^{0}\|_{H^{1}(0, T;H^{2}(0, L))}, \|\beta_{2}^{0}\|_{H^{1}(0, T;H^{2}(0, L))}, \|m_{1}\|_{H^{1}(0, h)}, \|n_{1}\|_{H^{1}(0, h)}, \|m_{2}\|_{H^{2}(\Omega)}, \|n_{2}\|_{H^{2}(\Omega)}, \|F_{1}\|_{L^{2}(0, T;H^{1}(0, h))}, \|G_{1}\|_{L^{2}(0, T;H^{1}(0, h))}, \|F_{2}\|_{L^{2}(0, T;H^{2}(\Omega))} \|G_{2}\|_{L^{2}(0, T;H^{2}(\Omega))} 的正常数.

类似地,可以得到

\begin{eqnarray} &&\|\partial_{x}^{2}w_{2}\|^{2}_{L^{\infty}(0, T;L^{2}(\Omega_{\infty}))}+\|\partial_{x}^{2}w_{3}\|^{2}_{L^{\infty}(0, T;L^{2}(\Omega_{\infty}))} \\ &&+\|\partial_{x}^{2}\partial_{Z}w_{2}\|^{2}_{L^{2}((0, T)\times\Omega_{\infty})} +\|\partial_{x}^{2}\partial_{Z}w_{3}\|^{2}_{L^{2}((0, T)\times\Omega_{\infty})} \leq C_{3}, \end{eqnarray}
(3.26)

这里 C_{3} 是依赖于 T, \ \|\alpha_{1}^{0}\|_{H^{1}(0, T)}, \|\beta_{1}^{0}\|_{H^{1}(0, T)}, \|\alpha_{2}^{0}\|_{H^{1}(0, T;H^{3}(0, L))}, \|\beta_{2}^{0}\|_{H^{1}(0, T;H^{3}(0, L))}, \|m_{1}\|_{H^{1}(0, h)}, \|n_{1}\|_{H^{1}(0, h)}, \|m_{2}\|_{H^{3}(\Omega)}, \|n_{2}\|_{H^{3}(\Omega)}, \|F_{1}\|_{L^{2}(0, T;H^{1}(0, h))}, \|G_{1}\|_{L^{2}(0, T;H^{1}(0, h))}, \|F_{2}\|_{L^{2}(0, T;H^{3}(\Omega))} \|G_{2}\|_{L^{2}(0, T;H^{3}(\Omega))} 的正常数.

第3步  在方程组(3.22)的第一个方程两端同时乘上 -\partial_{ZZ}w_{2} ,第二个方程两端同时乘上 -\partial_{ZZ}w_{3} ,然后在 \Omega_{\infty} 上积分,可以得到

\begin{eqnarray} &&\frac{1}{2}\frac{\rm d}{{\rm d}t}(\|\partial_{Z}w_{2}\|_{L^{2}(\Omega_{\infty})}^{2}+\|\partial_{Z}w_{3}\|_{L^{2}(\Omega_{\infty})}^{2}) +\|\partial_{Z}^{2}w_{2}\|_{L^{2}(\Omega_{\infty})}^{2}+\|\partial_{Z}^{2}w_{3}\|_{L^{2}(\Omega_{\infty})}^{2} \\& = &\int_{\Omega_{\infty}}[\Gamma_{1}(-\partial_{Z}^{2}w_{2})+\Gamma_{2}(-\partial_{Z}^{2}w_{3})]{\rm d}x{\rm d}Z \\&&+\int_{\Omega_{\infty}}(-\varphi_{1}^{0, 0}\partial_{x}u_{2}^{0}|_{z = 0}+\psi_{1}^{0, 0}\partial_{x}b_{2}^{0}|_{z = 0})(-\partial_{Z}^{2}w_{2}){\rm d}x{\rm d}Z \\&&+\int_{\Omega_{\infty}}(-\varphi_{1}^{0, 0}\partial_{x}b_{2}^{0}|_{z = 0}+\psi_{1}^{0, 0}\partial_{x}u_{2}^{0}|_{z = 0})(-\partial_{Z}^{2}w_{3}){\rm d}x{\rm d}Z \\&&+\int_{\Omega_{\infty}}(u^{0}_{1}|_{z = 0}+\varphi_{1}^{0, 0})\partial_{x}w_{2}\partial_{Z}^{2}w_{2}{\rm d}x{\rm d}Z +\int_{\Omega_{\infty}}(u^{0}_{1}|_{z = 0}+\varphi_{1}^{0, 0})\partial_{x}w_{3}\partial_{Z}^{2}w_{3}{\rm d}x{\rm d}Z \\&&-\int_{\Omega_{\infty}}(b^{0}_{1}|_{z = 0}+\psi_{1}^{0, 0})(\partial_{x}w_{3}\partial_{Z}^{2}w_{2} +\partial_{x}w_{2}\partial_{Z}^{2}w_{3}){\rm d}x{\rm d}Z \\ &\leq&(\|\partial_{t}\alpha_{2}^{0}\|_{L^{2}(0, L)}+\|F_{2}|_{z = 0}\|_{L^{2}(0, L)}+\|\alpha_{2}^{0}\|_{L^{2}(0, L)} +\|u_{2}^{0}|_{z = 0}\|_{L^{2}(0, L)}\\&&+|u_{1}^{0}|_{z = 0}|\|\partial_{x}\alpha_{2}^{0}\|_{L^{2}(0, L)} +\|\varphi_{1}^{0, 0}\|_{L^{\infty}(0, +\infty)}\|\partial_{x}\alpha_{2}^{0}\|_{L^{2}(0, L)} \\&&+\|\varphi_{1}^{0, 0}\|_{L^{\infty}(0, +\infty)}\|\partial_{x}u_{2}^{0}|_{z = 0}\|_{L^{2}(0, L)} +|b_{1}^{0}|_{z = 0}|\|\partial_{x}\beta_{2}^{0}\|_{L^{2}(0, L)} \\&&+\|\psi_{1}^{0, 0}\|_{L^{\infty}(0, +\infty)}\|\partial_{x}\beta_{2}^{0}\|_{L^{2}(0, L)} +\|\psi_{1}^{0, 0}\|_{L^{\infty}(0, +\infty)}\|\partial_{x}b_{2}^{0}|_{z = 0}\|_{L^{2}(0, L)})\\&& \times\|{\rm e}^{-Z}\|_{L^{2}(0, +\infty)} \|\partial_{Z}^{2}w_{2}\|_{L^{2}(\Omega_{\infty})} +(\|\partial_{t}\beta_{2}^{0}\|_{L^{2}(0, L)}+\|G_{2}|_{z = 0}\|_{L^{2}(0, L)}+\|\beta_{2}^{0}\|_{L^{2}(0, L)} \\&&+\|b_{2}^{0}|_{z = 0}\|_{L^{2}(0, L)}+|u_{1}^{0}|_{z = 0}|\|\partial_{x}\beta_{2}^{0}\|_{L^{2}(0, L)} +\|\varphi_{1}^{0, 0}\|_{L^{\infty}(0, +\infty)}\|\partial_{x}\beta_{2}^{0}\|_{L^{2}(0, L)} \\&&+\|\varphi_{1}^{0, 0}\|_{L^{\infty}(0, +\infty)}\|\partial_{x}b_{2}^{0}|_{z = 0}\|_{L^{2}(0, L)} +|b_{1}^{0}|_{z = 0}|\|\partial_{x}\alpha_{2}^{0}\|_{L^{2}(0, L)} +\|\psi_{1}^{0, 0}\|_{L^{\infty}(0, +\infty)}\\&&\times\|\partial_{x}\alpha_{2}^{0}\|_{L^{2}(0, L)} +\|\psi_{1}^{0, 0}\|_{L^{\infty}(0, +\infty)}\|\partial_{x}u_{2}^{0}|_{z = 0}\|_{L^{2}(0, L)})\|{\rm e}^{-Z}\|_{L^{2}(0, +\infty)} \|\partial_{Z}^{2}w_{3}\|_{L^{2}(\Omega_{\infty})}\\&&+(\|\partial_{x}u_{2}^{0}|_{z = 0}\|_{L^{2}(0, L)}\|\varphi_{1}^{0, 0}\|_{L^{2}(0, +\infty)} +\|\partial_{x}b_{2}^{0}|_{z = 0}\|_{L^{2}(0, L)}\|\psi_{1}^{0, 0}\|_{L^{2}(0, +\infty)}) \|\partial_{Z}^{2}w_{2}\|_{L^{2}(\Omega_{\infty})} \\&&+(\|\partial_{x}b_{2}^{0}|_{z = 0}\|_{L^{2}(0, L)}\|\varphi_{1}^{0, 0}\|_{L^{2}(0, +\infty)} +\|\partial_{x}u_{2}^{0}|_{z = 0}\|_{L^{2}(0, L)}\|\psi_{1}^{0, 0}\|_{L^{2}(0, +\infty)}) \|\partial_{Z}^{2}w_{3}\|_{L^{2}(\Omega_{\infty})}\\&&+(|u_{1}^{0}|_{z = 0}|+\|\varphi_{1}^{0, 0}\|_{L^{\infty}(0, +\infty)}) (\|\partial_{x}w_{2}\|_{L^{2}(\Omega_{\infty})}\|\partial_{Z}^{2}w_{2}\|_{L^{2}(\Omega_{\infty})}\\&&+ \|\partial_{x}w_{3}\|_{L^{2}(\Omega_{\infty})}\|\partial_{Z}^{2}w_{3}\|_{L^{2}(\Omega_{\infty})}) +(|b_{1}^{0}|_{z = 0}|+\|\psi_{1}^{0, 0}\|_{L^{\infty}(0, +\infty)}) \\ &&\times(\|\partial_{x}w_{3}\|_{L^{2}(\Omega_{\infty})}\|\partial_{Z}^{2}w_{2}\|_{L^{2}(\Omega_{\infty})}+ \|\partial_{x}w_{2}\|_{L^{2}(\Omega_{\infty})}\|\partial_{Z}^{2}w_{3}\|_{L^{2}(\Omega_{\infty})}), \end{eqnarray}
(3.27)

然后应用柯西不等式以及关于时间积分,可得

\begin{eqnarray} &&\|\partial_{Z}w_{2}\|^{2}_{L^{\infty}(0, T;L^{2}(\Omega_{\infty}))}+\|\partial_{Z}w_{3}\|^{2}_{L^{\infty}(0, T;L^{2}(\Omega_{\infty}))} \\ &&+\|\partial_{Z}^{2}w_{2}\|^{2}_{L^{2}((0, T)\times\Omega_{\infty})} +\|\partial_{Z}^{2}w_{3}\|^{2}_{L^{2}((0, T)\times\Omega_{\infty})} \leq C_{4}, \end{eqnarray}
(3.28)

这里 C_{4} 是依赖于 T, \|\alpha_{1}^{0}\|_{H^{1}(0, T)}, \|\beta_{1}^{0}\|_{H^{1}(0, T)}, \|\alpha_{2}^{0}\|_{H^{1}(0, T;H^{2}(0, L))}, \|\beta_{2}^{0}\|_{H^{1}(0, T;H^{2}(0, L))}, \|m_{1}\|_{H^{1}(0, h)}, \|n_{1}\|_{H^{1}(0, h)}, \|m_{2}\|_{H^{2}(\Omega)}, \|n_{2}\|_{H^{2}(\Omega)}, \|F_{1}\|_{L^{2}(0, T;H^{1}(0, h))}, \|G_{1}\|_{L^{2}(0, T;H^{1}(0, h))}, \|F_{2}\|_{L^{2}(0, T;H^{2}(\Omega))} \|G_{2}\|_{L^{2}(0, T;H^{2}(\Omega))} 的正常数.

第4步  对方程组(3.22)作用算子 \partial_{x} ,将新得到的方程组的第一个方程两端同时乘上 -\partial_{x}\partial_{Z}^{2}w_{2} ,第二个方程两端同时乘上 -\partial_{x}\partial_{Z}^{2}w_{3} ,然后在 \Omega_{\infty} 上积分,利用与第3步相同的方法可以获得

\begin{eqnarray} &&\|\partial_{x}\partial_{Z}w_{2}\|^{2}_{L^{\infty}(0, T;L^{2}(\Omega_{\infty}))}+\|\partial_{x}\partial_{Z}w_{3}\|^{2}_{L^{\infty}(0, T;L^{2}(\Omega_{\infty}))} \\ &&+\|\partial_{x}\partial_{Z}^{2}w_{2}\|^{2}_{L^{2}((0, T)\times\Omega_{\infty})} +\|\partial_{x}\partial_{Z}^{2}w_{3}\|^{2}_{L^{2}((0, T)\times\Omega_{\infty})} \leq C_{5}, \end{eqnarray}
(3.29)

这里 C_{5} 是依赖于 T, \ \|\alpha_{1}^{0}\|_{H^{1}(0, T)}, \|\beta_{1}^{0}\|_{H^{1}(0, T)}, \|\alpha_{2}^{0}\|_{H^{1}(0, T;H^{3}(0, L))}, \|\beta_{2}^{0}\|_{H^{1}(0, T;H^{3}(0, L))}, \|m_{1}\|_{H^{1}(0, h)}, \|n_{1}\|_{H^{1}(0, h)}, \|m_{2}\|_{H^{3}(\Omega)}, \|n_{2}\|_{H^{3}(\Omega)}, \|F_{1}\|_{L^{2}(0, T;H^{1}(0, h))}, \|G_{1}\|_{L^{2}(0, T;H^{1}(0, h))}, \|F_{2}\|_{L^{2}(0, T;H^{3}(\Omega))} \|G_{2}\|_{L^{2}(0, T;H^{3}(\Omega))} 的正常数.

第5步  结合(38), (39), (42)和(43)式,并且利用各向异性Sobolev不等式[15, 17],我们可以得到

\begin{eqnarray} \|w_{2}\|_{L^{\infty}((0, T)\times\Omega_{\infty})} &\leq & C(\|w_{2}\|^{\frac{1}{2}}_{L^{\infty}(0, T;L^{2}(\Omega_{\infty}))}\|\partial_{x}\partial_{Z}w_{2}\|^{\frac{1}{2}}_{L^{\infty}(0, T;L^{2}(\Omega_{\infty}))} \\ &&+\|\partial_{x}w_{2}\|^{\frac{1}{2}}_{L^{\infty}(0, T;L^{2}(\Omega_{\infty}))}\|\partial_{Z}w_{2}\|^{\frac{1}{2}}_{L^{\infty}(0, T;L^{2}(\Omega_{\infty}))}) \\&\leq& C_{6}, \end{eqnarray}
(3.30)

\begin{eqnarray} \|w_{3}\|_{L^{\infty}((0, T)\times\Omega_{\infty})}& \leq & C(\|w_{3}\|^{\frac{1}{2}}_{L^{\infty}(0, T;L^{2}(\Omega_{\infty}))}\|\partial_{x}\partial_{Z}w_{3}\|^{\frac{1}{2}}_{L^{\infty}(0, T;L^{2}(\Omega_{\infty}))} \\ &&+\|\partial_{x}w_{3}\|^{\frac{1}{2}}_{L^{\infty}(0, T;L^{2}(\Omega_{\infty}))}\|\partial_{Z}w_{3}\|^{\frac{1}{2}}_{L^{\infty}(0, T;L^{2}(\Omega_{\infty}))}) \\&\leq& C_{6}.\end{eqnarray}
(3.31)

这里 C_{6} 是依赖于T, {{\left\| \alpha _{1}^{0} \right\|}_{{{H}^{1}}(0, T)}}, \ \|\beta _{1}^{0}{{\|}_{{{H}^{1}}(0, T)}}, {{\left\| \alpha _{2}^{0} \right\|}_{{{H}^{1}}(0, T;{{H}^{3}}(0, L))}}, \|\beta _{2}^{0}{{\|}_{{{H}^{1}}(0, T;{{H}^{3}}(0, L))}}, \|{{m}_{1}}{{\|}_{{{H}^{1}}(0, h)}}, {{\left\| {{n}_{1}} \right\|}_{{{H}^{1}}(0, h)}}, \|{{m}_{2}}{{\|}_{{{H}^{3}}(\Omega )}}, {{\left\| {{n}_{2}} \right\|}_{{{H}^{3}}(\Omega )}}, \|{{F}_{1}}{{\|}_{{{L}^{2}}(0, T;{{H}^{1}}(0, h))}}, {{\left\| {{G}_{1}} \right\|}_{{{L}^{2}}(0, T;{{H}^{1}}(0, h))}}, {{\left\| {{F}_{2}} \right\|}_{{{L}^{2}}(0, T;{{H}^{3}}(\Omega ))}} \|G_{2}\|_{L^{2}(0, T;H^{3}(\Omega))} 的正常数.

第6步  在方程组(3.22)的第一个方程两端同时乘上 \langle Z\rangle ^{2l} w_{2} ,第二个方程两端同时乘上 \langle Z\rangle ^{2l} w_{3} ,然后在 \Omega_{\infty} 上积分,利用函数在 x 方向的周期性,最终可以得到

\begin{eqnarray} &&\frac{1}{2}\frac{\rm d}{{\rm d}t}(\|\langle Z\rangle^{l}w_{2}\|_{L^{2}(\Omega_{\infty})}^{2}+\|\langle Z\rangle^{l}w_{3}\|_{L^{2}(\Omega_{\infty})}^{2}) +\|\langle Z\rangle^{l}\partial_{Z}w_{2}\|_{L^{2}(\Omega_{\infty})}^{2}+\|\langle Z\rangle^{l}\partial_{Z}w_{3}\|_{L^{2}(\Omega_{\infty})}^{2}\\& = &\int_{\Omega_{\infty}}(\Gamma_{1}w_{2}+\Gamma_{2}w_{3})\langle Z\rangle ^{2l}{\rm d}x{\rm d}Z +\int_{\Omega_{\infty}}(-\varphi_{1}^{0, 0}\partial_{x}u_{2}^{0}|_{z = 0}+\psi_{1}^{0, 0}\partial_{x}b_{2}^{0}|_{z = 0})\langle Z\rangle ^{2l}w_{2}{\rm d}x{\rm d}Z\\&&+\int_{\Omega_{\infty}}(-\varphi_{1}^{0, 0}\partial_{x}b_{2}^{0}|_{z = 0}+\psi_{1}^{0, 0}\partial_{x}u_{2}^{0}|_{z = 0})\langle Z\rangle ^{2l}w_{3}{\rm d}x{\rm d}Z \\&&-l\int_{\Omega_{\infty}}[\partial_{Z}(w_{2})^{2}+\partial_{Z}(w_{3})^{2}]Z(1+Z^{2})^{l-1}{\rm d}x{\rm d}Z \\&\leq&(\|\partial_{t}\alpha_{2}^{0}\|_{L^{2}(0, L)}+\|F_{2}|_{z = 0}\|_{L^{2}(0, L)}+\|\alpha_{2}^{0}\|_{L^{2}(0, L)} +\|u_{2}^{0}|_{z = 0}\|_{L^{2}(0, L)}\\&&+|u_{1}^{0}|_{z = 0}|\|\partial_{x}\alpha_{2}^{0}\|_{L^{2}(0, L)} +\|\varphi_{1}^{0, 0}\|_{L^{\infty}(0, +\infty)}\|\partial_{x}\alpha_{2}^{0}\|_{L^{2}(0, L)} +\|\varphi_{1}^{0, 0}\|_{L^{\infty}(0, +\infty)}\\&& \times\|\partial_{x}u_{2}^{0}|_{z = 0}\|_{L^{2}(0, L)} +|b_{1}^{0}|_{z = 0}|\|\partial_{x}\beta_{2}^{0}\|_{L^{2}(0, L)} +\|\psi_{1}^{0, 0}\|_{L^{\infty}(0, +\infty)}\|\partial_{x}\beta_{2}^{0}\|_{L^{2}(0, L)} \\&&+\|\psi_{1}^{0, 0}\|_{L^{\infty}(0, +\infty)}\|\partial_{x}b_{2}^{0}|_{z = 0}\|_{L^{2}(0, L)})\|\langle Z\rangle ^{l} {\rm e}^{-Z}\|_{L^{2}(0, +\infty)} \|\langle Z\rangle ^{l}w_{2}\|_{L^{2}(\Omega_{\infty})} \\&&+(\|\partial_{t}\beta_{2}^{0}\|_{L^{2}(0, L)}+\|G_{2}|_{z = 0}\|_{L^{2}(0, L)}+\|\beta_{2}^{0}\|_{L^{2}(0, L)} +\|b_{2}^{0}|_{z = 0}\|_{L^{2}(0, L)}\\&&+|u_{1}^{0}|_{z = 0}|\|\partial_{x}\beta_{2}^{0}\|_{L^{2}(0, L)} +\|\varphi_{1}^{0, 0}\|_{L^{\infty}(0, +\infty)}\|\partial_{x}\beta_{2}^{0}\|_{L^{2}(0, L)} +\|\varphi_{1}^{0, 0}\|_{L^{\infty}(0, +\infty)}\\&& \times\|\partial_{x}b_{2}^{0}|_{z = 0}\|_{L^{2}(0, L)} +|b_{1}^{0}|_{z = 0}|\|\partial_{x}\alpha_{2}^{0}\|_{L^{2}(0, L)} +\|\psi_{1}^{0, 0}\|_{L^{\infty}(0, +\infty)}\|\partial_{x}\alpha_{2}^{0}\|_{L^{2}(0, L)} \\&&+\|\psi_{1}^{0, 0}\|_{L^{\infty}(0, +\infty)}\|\partial_{x}u_{2}^{0}|_{z = 0}\|_{L^{2}(0, L)})\|\langle Z\rangle ^{l}{\rm e}^{-Z}\|_{L^{2}(0, +\infty)} \|\langle Z\rangle^{l}w_{3}\|_{L^{2}(\Omega_{\infty})}\\&& +(\|\partial_{x}u_{2}^{0}|_{z = 0}\|_{L^{2}(0, L)}\|\langle Z\rangle^{l}\varphi_{1}^{0, 0}\|_{L^{2}(0, +\infty)} +\|\partial_{x}b_{2}^{0}|_{z = 0}\|_{L^{2}(0, L)}\|\langle Z\rangle^{l}\psi_{1}^{0, 0}\|_{L^{2}(0, +\infty)})\\&& \times \|\langle Z\rangle ^{l}w_{2}\|_{L^{2}(\Omega_{\infty})} +(\|\partial_{x}b_{2}^{0}|_{z = 0}\|_{L^{2}(0, L)}\|\langle Z\rangle^{l}\varphi_{1}^{0, 0}\|_{L^{2}(0, +\infty)} \\&&+\|\partial_{x}u_{2}^{0}|_{z = 0}\|_{L^{2}(0, L)}\|\langle Z\rangle ^{l}\psi_{1}^{0, 0}\|_{L^{2}(0, +\infty)}) \|\langle Z\rangle ^{l}w_{3}\|_{L^{2}(\Omega_{\infty})} \\ && +l(2l-1)(\|\langle Z\rangle^{l}w_{2}\|^{2}_{L^{2}(\Omega_{\infty})} +\|\langle Z\rangle ^{l}w_{3}\|^{2}_{L^{2}(\Omega_{\infty})}), \end{eqnarray}
(3.32)

利用柯西不等式和Gronwall不等式,可以获得

\begin{eqnarray} &&\|\langle Z\rangle^{l}w_{2}\|^{2}_{L^{\infty}(0, T;L^{2}(\Omega_{\infty}))}+\|\langle Z\rangle^{l}w_{3}\|^{2}_{L^{\infty}(0, T;L^{2}(\Omega_{\infty}))}\\ &&+ \|\langle Z\rangle^{l}\partial_{Z}w_{2}\|^{2}_{L^{2}((0, T)\times\Omega_{\infty})} +\|\langle Z\rangle^{l}\partial_{Z}w_{3}\|^{2}_{L^{2}((0, T)\times\Omega_{\infty})} \leq C_{7}, \end{eqnarray}
(3.33)

这里 C_{7} 是依赖于 T, \ l, \ \|\alpha_{1}^{0}\|_{H^{1}(0, T)}, \|\beta_{1}^{0}\|_{H^{1}(0, T)}, \|\alpha_{2}^{0}\|_{H^{1}((0, T)\times(0, L))}, \|\beta_{2}^{0}\|_{H^{1}((0, T)\times(0, L))}, \|m_{1}\|_{H^{1}(0, h)}, \|n_{1}\|_{H^{1}(0, h)}, \|m_{2}\|_{H^{1}(\Omega)}, \|n_{2}\|_{H^{1}(\Omega)}, \|F_{1}\|_{L^{2}(0, T;H^{1}(0, h))}, \|G_{1}\|_{L^{2}(0, T;H^{1}(0, h))}, \|F_{2}\|_{L^{2}(0, T;H^{1}(\Omega))} \|G_{2}\|_{L^{2}(0, T;H^{1}(\Omega))} 的正常数.

最后,结合(3.24), (3.28), (3.30), (3.31)和(3.33)式以及 w_{2}, \ w_{3} 的定义,能够很容易得到(3.18)–(3.21)式.证毕.

由于 \partial^{k}_{x}\varphi_{2}^{0, 0}, \ \partial^{k}_{x}\psi_{2}^{0, 0}, \ k\in{{\Bbb Z}_{+}} \varphi_{2}^{0, 0}, \psi_{2}^{0, 0} 满足一样的方程,所以当 \alpha_{2}^{0}, \ \beta_{2}^{0}, \ m_{2}, \ n_{2}, \ F_{2} G_{2} 在空间上提高 k 阶正则性时,我们可以得到关于 \partial^{k}_{x}\varphi_{2}^{0, 0} \partial^{k}_{x}\psi_{2}^{0, 0} 的与命题3.3相同的结论.

4 定理的证明

现在我们开始证明定理2.1和2.2.定义误差函数为

u_{1}^{r} = u_{1}-u_{1}^{app}, \ \ \ \ b_{1}^{r} = b_{1}-b_{1}^{app},

u_{2}^{r} = u_{2}-u_{2}^{app}, \ \ \ \ b_{2}^{r} = b_{2}-b_{2}^{app}.

利用方程组(1.7), (1.10), (3.1)和(3.2),可以获得关于误差函数 u_{1}^{r}, \ b_{1}^{r}, \ u_{2}^{r} b_{2}^{r} 的方程:

\begin{equation} \left\{\begin{array}{ll} & {\partial_{t}u_{1}^{r}-\varepsilon_{1}\partial_{z}^{2}u_{1}^{r} = A+B+Y, }\\ & {u_{1}^{r}|_{z = 0} = u_{1}^{r}|_{z = h} = 0, }\\ & {u_{1}^{r}|_{t = 0} = 0, } \end{array} \right. \end{equation}
(4.1)

\begin{equation} \left\{\begin{array}{ll} & {\partial_{t}b_{1}^{r}-\varepsilon_{2}\partial_{z}^{2}b_{1}^{r} = D+E+O, }\\ & {b_{1}^{r}|_{z = 0} = b_{1}^{r}|_{z = h} = 0, }\\ & {b_{1}^{r}|_{t = 0} = 0, } \end{array} \right. \end{equation}
(4.2)

\begin{equation} \left\{\begin{array}{ll} & \partial_{t}u_{2}^{r}-\varepsilon_{1}(\partial_{x}^{2}u_{2}^{r}+\partial_{z}^{2}u_{2}^{r}) +u_{1}\partial_{x}u_{2}^{r}+u_{1}^{r}\partial_{x}u_{2}^{app}\\&-b_{1}\partial_{x}b_{2}^{r} -b_{1}^{r}\partial_{x}b_{2}^{app} = K+P+M+N+Q, \\ & \partial_{t}b_{2}^{r}-\varepsilon_{2}(\partial_{x}^{2}b_{2}^{r}+\partial_{z}^{2}b_{2}^{r}) +u_{1}\partial_{x}b_{2}^{r}+u_{1}^{r}\partial_{x}b_{2}^{app}\\&-b_{1}\partial_{x}u_{2}^{r} -b_{1}^{r}\partial_{x}u_{2}^{app} = R+T+U+V+W, \\ & {u_{2}^{r}|_{z = 0} = u_{2}^{r}|_{z = h} = 0, \ u_{2}^{r}|_{t = 0} = 0, }\\ & {b_{2}^{r}|_{z = 0} = b_{2}^{r}|_{z = h} = 0, \ b_{2}^{r}|_{t = 0} = 0, } \end{array} \right. \end{equation}
(4.3)

这里

\begin{eqnarray} &&A = \varepsilon_{1}[\partial_{z}^{2}u_{1}^{0}+\rho''(z)\varphi_{1}^{0, 0}+\rho''(h-z)\varphi_{1}^{0, h}], \\&&B = \frac{2\varepsilon_{1}}{\sqrt{\varepsilon^{*}}}[\rho'(z)\partial_{Z}\varphi_{1}^{0, 0}+\rho'(h-z)\partial_{Z^{h}}\varphi_{1}^{0, h}], \\&& Y = \frac{\varepsilon_{1}-\varepsilon^{*}}{\varepsilon^{*}}[\rho(z)\partial_{Z}^{2}\varphi_{1}^{0, 0}+\rho(h-z)\partial_{Z^{h}}^{2}\varphi_{1}^{0, h}], \\&& D = \varepsilon_{2}[\partial_{z}^{2}b_{1}^{0}+\rho''(z)\psi_{1}^{0, 0}+\rho''(h-z)\psi_{1}^{0, h}], \\&& E = \frac{2\varepsilon_{2}}{\sqrt{\varepsilon^{*}}}[\rho'(z)\partial_{Z}\psi_{1}^{0, 0}+\rho'(h-z)\partial_{Z^{h}}\psi_{1}^{0, h}], \\&& O = \frac{\varepsilon_{2}-\varepsilon^{*}}{\varepsilon^{*}}[\rho(z)\partial_{Z}^{2}\psi_{1}^{0, 0}+\rho(h-z)\partial_{Z^{h}}^{2}\psi_{1}^{0, h}], \\ && K = \varepsilon_{1}[\partial_{x}^{2}u_{2}^{0}+\partial_{z}^{2}u_{2}^{0}+\rho(z)\partial_{x}^{2}\varphi_{2}^{0, 0} +\rho(h-z)\partial_{x}^{2}\varphi_{2}^{0, h}+\rho''(z)\varphi_{2}^{0, 0}+\rho''(h-z)\varphi_{2}^{0, h}], \\&& P = \frac{2\varepsilon_{1}}{\sqrt{\varepsilon^{*}}}[\rho'(z)\partial_{Z}\varphi_{2}^{0, 0}+\rho'(h-z)\partial_{Z^{h}}\varphi_{2}^{0, h}], \\&& M = \frac{\varepsilon_{1}-\varepsilon^{*}}{\varepsilon^{*}}[\rho(z)\partial_{Z}^{2}\varphi_{2}^{0, 0}+\rho(h-z)\partial_{Z^{h}}^{2}\varphi_{2}^{0, h}], \\&& N = -\sqrt{\varepsilon^{*}}[\rho(z)Z(\partial_{z}u_{1}^{0}|_{z = \xi_{1}}\partial_{x}\varphi_{2}^{0, 0} +\partial_{x}\partial_{z}u_{2}^{0}|_{z = \xi_{3}}\varphi_{1}^{0, 0}-\partial_{z}b_{1}^{0}|_{z = \xi_{5}}\partial_{x}\psi_{2}^{0, 0} \\&& \;\; -\partial_{x}\partial_{z}b_{2}^{0}|_{z = \xi_{7}}\psi_{1}^{0, 0}) -\rho(h-z)Z^{h}(\partial_{z}u_{1}^{0}|_{z = \xi_{2}}\partial_{x}\varphi_{2}^{0, h} +\partial_{x}\partial_{z}u_{2}^{0}|_{z = \xi_{4}}\varphi_{1}^{0, h}\\&& \;\; -\partial_{z}b_{1}^{0}|_{z = \xi_{6}}\partial_{x}\psi_{2}^{0, h} -\partial_{x}\partial_{z}b_{2}^{0}|_{z = \xi_{8}}\psi_{1}^{0, h})], \\&& Q = \rho(z)(\rho(z)-1)(-\varphi_{1}^{0, 0}\partial_{x}\varphi_{2}^{0, 0}+\psi_{1}^{0, 0}\partial_{x}\psi_{2}^{0, 0}) -\rho(h-z)(\rho(h-z)-1)\\&& \;\; \times(\varphi_{1}^{0, h}\partial_{x}\varphi_{2}^{0, h}-\psi_{1}^{0, h}\partial_{x}\psi_{2}^{0, h}), \\&& R = \varepsilon_{2}[\partial_{x}^{2}b_{2}^{0}+\partial_{z}^{2}b_{2}^{0}+\rho(z)\partial_{x}^{2}\psi_{2}^{0, 0} +\rho(h-z)\partial_{x}^{2}\psi_{2}^{0, h}+\rho''(z)\psi_{2}^{0, 0}+\rho''(h-z)\psi_{2}^{0, h}], \\&& T = \frac{2\varepsilon_{2}}{\sqrt{\varepsilon^{*}}}[\rho'(z)\partial_{Z}\psi_{2}^{0, 0}+\rho'(h-z)\partial_{Z^{h}}\psi_{2}^{0, h}], \\&& U = \frac{\varepsilon_{2}-\varepsilon^{*}}{\varepsilon^{*}}[\rho(z)\partial_{Z}^{2}\psi_{2}^{0, 0}+\rho(h-z)\partial_{Z^{h}}^{2}\psi_{2}^{0, h}], \\&& V = -\sqrt{\varepsilon^{*}}[\rho(z)Z(\partial_{z}u_{1}^{0}|_{z = \xi_{1}}\partial_{x}\psi_{2}^{0, 0} +\partial_{x}\partial_{z}b_{2}^{0}|_{z = \xi_{7}}\varphi_{1}^{0, 0}-\partial_{z}b_{1}^{0}|_{z = \xi_{5}}\partial_{x}\varphi_{2}^{0, 0} \\&& \;\; -\partial_{x}\partial_{z}u_{2}^{0}|_{z = \xi_{3}}\psi_{1}^{0, 0}) -\rho(h-z)Z^{h}(\partial_{z}u_{1}^{0}|_{z = \xi_{2}}\partial_{x}\psi_{2}^{0, h} +\partial_{x}\partial_{z}b_{2}^{0}|_{z = \xi_{8}}\varphi_{1}^{0, h}\\&& \;\; -\partial_{z}b_{1}^{0}|_{z = \xi_{6}}\partial_{x}\varphi_{2}^{0, h} -\partial_{x}\partial_{z}u_{2}^{0}|_{z = \xi_{4}}\psi_{1}^{0, h})], \\&& W = \rho(z)(\rho(z)-1)(-\varphi_{1}^{0, 0}\partial_{x}\psi_{2}^{0, 0}+\psi_{1}^{0, 0}\partial_{x}\varphi_{2}^{0, 0}) -\rho(h-z)(\rho(h-z)-1)\\&& \;\; \times(\varphi_{1}^{0, h}\partial_{x}\psi_{2}^{0, h}-\psi_{1}^{0, h}\partial_{x}\varphi_{2}^{0, h}), \\ && \xi_{i}\in(0, h), \ i = 1, 2\cdot\cdot\cdot8. \end{eqnarray}
(4.4)

4.1 定理2.1的证明

在(4.1)式两端同时乘上 u_{1}^{r} ,然后在 [0, h] 上积分,得

\begin{eqnarray} \frac{1}{2}\frac{\rm d}{{\rm d}t}\|u_{1}^{r}\|_{L^{2}(0, h)}^{2}+\varepsilon_{1}\|\partial_{z}u_{1}^{r}\|_{L^{2}(0, h)}^{2} = \int_{0}^{h}(A+B+Y)u_{1}^{r}{\rm d}z. \end{eqnarray}
(4.5)

我们估计右端的每一项,

\begin{eqnarray} \int_{0}^{h}Au_{1}^{r}{\rm d}z & = &\varepsilon_{1}\int_{0}^{h}\partial_{z}^{2}u_{1}^{0}u_{1}^{r}{\rm d}z +\varepsilon_{1}\int_{\frac{h}{4}}^{\frac{3h}{4}}[\rho''(z)\varphi_{1}^{0, 0}+ \rho''(h-z)\varphi_{1}^{0, h}]u_{1}^{r}{\rm d}z\\& \leq&\varepsilon_{1}\|\partial_{z}^{2}u_{1}^{0}\|_{L^{2}(0, h)}\|u_{1}^{r}\|_{L^{2}(0, h)} +C(h)\varepsilon_{1}(\varepsilon^{*})^{\frac{1}{4}}\|u_{1}^{r}\|_{L^{2}(0, h)} \bigg(\int_{\frac{h}{4\sqrt{\varepsilon^{*}}}}^{\frac{3h}{4\sqrt{\varepsilon^{*}}}}|\varphi_{1}^{0, 0}|^{2}{\rm d}Z\bigg)^{\frac{1}{2}} \\&& +C(h)\varepsilon_{1}(\varepsilon^{*})^{\frac{1}{4}}\|u_{1}^{r}\|_{L^{2}(0, h)} \bigg(\int_{\frac{h}{4\sqrt{\varepsilon^{*}}}}^{\frac{3h}{4\sqrt{\varepsilon^{*}}}}|\varphi_{1}^{0, h}|^{2}{\rm d}Z^{h}\bigg)^{\frac{1}{2}} \\ & \leq & \varepsilon_{1}\|\partial_{z}^{2}u_{1}^{0}\|_{L^{2}(0, h)}\|u_{1}^{r}\|_{L^{2}(0, h)}+ C(h)\varepsilon_{1}(\varepsilon^{*})^{\frac{1}{4}}(\|\varphi_{1}^{0, 0}\|_{L^{2}(0, +\infty)} +\|\varphi_{1}^{0, h}\|_{L^{2}(0, +\infty)})\\ &&\times\|u_{1}^{r}\|_{L^{2}(0, h)} \\ & \leq & \|u_{1}^{r}\|_{L^{2}(0, h)}^{2}+C(h)\varepsilon_{1}^{2}(\|u_{1}^{0}\|^{2}_{H^{2}(0, h)} +\|\varphi_{1}^{0, 0}\|^{2}_{L^{2}(0, +\infty)} +\|\varphi_{1}^{0, h}\|^{2}_{L^{2}(0, +\infty)}). \end{eqnarray}
(4.6)

\begin{eqnarray} \int_{0}^{h}Bu_{1}^{r}{\rm d}z & = &\frac{2\varepsilon_{1}}{\sqrt{\varepsilon^{*}}}\int_{\frac{h}{4}}^{\frac{3h}{4}}[\rho'(z)\partial_{Z}\varphi_{1}^{0, 0}+ \rho'(h-z)\partial_{Z^{h}}\varphi_{1}^{0, h}]u_{1}^{r}{\rm d}z\\& \leq & C(h)\varepsilon_{1}(\varepsilon^{*})^{\frac{1}{4}}\|u_{1}^{r}\|_{L^{2}(0, h)} \bigg[\bigg(\int_{\frac{h}{4\sqrt{\varepsilon^{*}}}}^{\frac{3h}{4\sqrt{\varepsilon^{*}}}}|\langle Z\rangle \partial_{Z}\varphi_{1}^{0, 0}|^{2}{\rm d}Z\bigg)^{\frac{1}{2}}\\&&+ \bigg(\int_{\frac{h}{4\sqrt{\varepsilon^{*}}}}^{\frac{3h}{4\sqrt{\varepsilon^{*}}}}|\langle Z^{h}\rangle \partial_{Z^{h}}\varphi_{1}^{0, h}|^{2}{\rm d}Z^{h}\bigg)^{\frac{1}{2}}\bigg]\\& \leq & C(h)\varepsilon_{1}(\varepsilon^{*})^{\frac{1}{4}}\|u_{1}^{r}\|_{L^{2}(0, h)}(\|\langle Z\rangle \partial_{Z}\varphi_{1}^{0, 0}\|_{L^{2}(0, +\infty)}+\|\langle Z^{h}\rangle \partial_{Z^{h}}\varphi_{1}^{0, h}\|_{L^{2}(0, +\infty)})\\& \leq & \|u_{1}^{r}\|_{L^{2}(0, h)}^{2}+C(h)\varepsilon_{1}^{2}(\varepsilon^{*})^{\frac{1}{2}}(\|\langle Z\rangle \partial_{Z}\varphi_{1}^{0, 0}\|^{2}_{L^{2}(0, +\infty)}\\ &&+\|\langle Z^{h}\rangle \partial_{Z^{h}}\varphi_{1}^{0, h}\|^{2}_{L^{2}(0, +\infty)}). \end{eqnarray}
(4.7)

\begin{eqnarray} \int_{0}^{h}Yu_{1}^{r}{\rm d}z & = &\frac{\varepsilon_{1}-\varepsilon^{*}}{\varepsilon^{*}}\int_{0}^{h} [\rho(z)\partial_{Z}^{2}\varphi_{1}^{0, 0}+ \rho(h-z)\partial_{Z^{h}}^{2}\varphi_{1}^{0, h}]u_{1}^{r}{\rm d}z\\& = &-\frac{\varepsilon_{1}-\varepsilon^{*}}{\sqrt{\varepsilon^{*}}}\int_{0}^{h} [\rho'(z)\partial_{Z}\varphi_{1}^{0, 0}+ \rho'(h-z)\partial_{Z^{h}}\varphi_{1}^{0, h}]u_{1}^{r}{\rm d}z\\&& -\frac{\varepsilon_{1}-\varepsilon^{*}}{\sqrt{\varepsilon^{*}}}\int_{0}^{h}[\rho(z)\partial_{Z}\varphi_{1}^{0, 0} -\rho(h-z)\partial_{Z^{h}}\varphi_{1}^{0, h}]\partial_{z}u_{1}^{r}{\rm d}z\\& \leq & C(h)\frac{|\varepsilon_{1}-\varepsilon^{*}|}{(\varepsilon^{*})^{\frac{1}{4}}}\|u_{1}^{r}\|_{L^{2}(0, h)} \bigg[\bigg(\int_{\frac{h}{4\sqrt{\varepsilon^{*}}}}^{\frac{3h}{4\sqrt{\varepsilon^{*}}}}| \partial_{Z}\varphi_{1}^{0, 0}|^{2}{\rm d}Z\bigg)^{\frac{1}{2}} \\ && +\bigg(\int_{\frac{h}{4\sqrt{\varepsilon^{*}}}}^{\frac{3h}{4\sqrt{\varepsilon^{*}}}} |\partial_{Z^{h}}\varphi_{1}^{0, h}|^{2}{\rm d}Z^{h}\bigg)^{\frac{1}{2}}\bigg]\\ && +\frac{|\varepsilon_{1}-\varepsilon^{*}|}{(\varepsilon^{*})^{\frac{1}{4}}}\|\partial_{z}u_{1}^{r}\|_{L^{2}(0, h)} \bigg[\bigg(\int_{0}^{\frac{h}{\sqrt{\varepsilon^{*}}}}| \partial_{Z}\varphi_{1}^{0, 0}|^{2}{\rm d}Z\bigg)^{\frac{1}{2}} +\bigg(\int_{0}^{\frac{h}{\sqrt{\varepsilon^{*}}}} |\partial_{Z^{h}}\varphi_{1}^{0, h}|^{2}{\rm d}Z^{h}\bigg)^{\frac{1}{2}}\bigg]\\& \leq & \|u_{1}^{r}\|_{L^{2}(0, h)}^{2}+\frac{\varepsilon_{1}}{2}\|\partial_{z}u_{1}^{r}\|^{2}_{L^{2}(0, h)} +C(h)\frac{(\varepsilon_{1}-\varepsilon^{*})^{2}}{\sqrt{\varepsilon^{*}}\varepsilon_{1}} (\|\partial_{Z}\varphi_{1}^{0, 0}\|^{2}_{L^{2}(0, +\infty)}\\ &&+\|\partial_{Z^{h}}\varphi_{1}^{0, h}\|^{2}_{L^{2}(0, +\infty)}).\\\end{eqnarray}
(4.8)

因此

\begin{eqnarray} &&\frac{1}{2}\frac{\rm d}{{\rm d}t}\|u_{1}^{r}\|_{L^{2}(0, h)}^{2}+\frac{\varepsilon_{1}}{2}\|\partial_{z}u_{1}^{r}\|_{L^{2}(0, h)}^{2}\\ &\leq& 3\|u_{1}^{r}\|_{L^{2}(0, h)}^{2} +C(h)\max\bigg \{\frac{(\varepsilon_{1}-\varepsilon^{*})^{2}}{\sqrt{\varepsilon^{*}}\varepsilon_{1}}, \varepsilon_{1}^{2}\bigg\} (\|u_{1}^{0}\|^{2}_{H^{2}(0, h)} +\|\varphi_{1}^{0, 0}\|^{2}_{L^{2}(0, +\infty)} \\&&+\|\varphi_{1}^{0, h}\|^{2}_{L^{2}(0, +\infty)}+\|\langle Z\rangle \partial_{Z}\varphi_{1}^{0, 0}\|^{2}_{L^{2}(0, +\infty)}\\ &&+\|\langle Z^{h}\rangle \partial_{Z^{h}}\varphi_{1}^{0, h}\|^{2}_{L^{2}(0, +\infty)}+\|\partial_{Z}\varphi_{1}^{0, 0}\|^{2}_{L^{2}(0, +\infty)} +\|\partial_{Z^{h}}\varphi_{1}^{0, h}\|^{2}_{L^{2}(0, +\infty)}), \end{eqnarray}
(4.9)

然后应用Gronwall不等式以及命题3.1,可以得到

\begin{eqnarray} \|u_{1}^{r}\|_{L^{\infty}(0, T;L^{2}(0, h))}+\sqrt{\varepsilon_{1}}\|\partial_{z}u_{1}^{r}\|_{L^{2}((0, T)\times(0, h))} \leq C\max\bigg\{\frac{|\varepsilon_{1}-\varepsilon^{*}|}{(\varepsilon^{*})^{\frac{1}{4}}(\varepsilon_{1})^{\frac{1}{2}}}, \varepsilon_{1}\bigg\}. \end{eqnarray}
(4.10)

由于关于 b_{1}^{r} 的方程(4.2)同关于 u_{1}^{r} 的方程类似,故可以利用相同的方法得到

\begin{equation} \|b_{1}^{r}\|_{L^{\infty}(0, T;L^{2}(0, h))}+\sqrt{\varepsilon_{2}}\|\partial_{z}b_{1}^{r}\|_{L^{2}((0, T)\times(0, h))} \leq C\max\bigg\{\frac{|\varepsilon_{2}-\varepsilon^{*}|}{(\varepsilon^{*})^{\frac{1}{4}}(\varepsilon_{2})^{\frac{1}{2}}}, \varepsilon_{2}\bigg\}. \end{equation}
(4.11)

接下来,我们对 u_{2}^{r} b_{2}^{r} 进行能量估计.

在方程组(4.3)的第一个方程两端同时乘上 u_{2}^{r} 以及第二个方程两端同时乘上 b_{2}^{r} ,在 \Omega 上积分

\begin{eqnarray} && \frac{1}{2}\frac{\rm d}{{\rm d}t}(\|u_{2}^{r}\|_{L^{2}(\Omega)}^{2} +\|b_{2}^{r}\|_{L^{2}(\Omega)}^{2})+\varepsilon_{1}(\|\partial_{x}u_{2}^{r}\|_{L^{2}(\Omega)}^{2}+\|\partial_{z}u_{2}^{r}\|_{L^{2}(\Omega)}^{2}) \\&&+\varepsilon_{2}(\|\partial_{x}b_{2}^{r}\|_{L^{2}(\Omega)}^{2}+\|\partial_{z}b_{2}^{r}\|_{L^{2}(\Omega)}^{2}) \\& = &-\int_{\Omega}u_{1}^{r}\partial_{x}u_{2}^{app}u_{2}^{r}{\rm d}x{\rm d}z+\int_{\Omega}b_{1}^{r}\partial_{x}b_{2}^{app}u_{2}^{r}{\rm d}x{\rm d}z -\int_{\Omega}u_{1}^{r}\partial_{x}b_{2}^{app}b_{2}^{r}{\rm d}x{\rm d}z \\&&+\int_{\Omega}b_{1}^{r}\partial_{x}u_{2}^{app}b_{2}^{r}{\rm d}x{\rm d}z +\int_{\Omega}Ku_{2}^{r}{\rm d}x{\rm d}z+\int_{\Omega}Rb_{2}^{r}{\rm d}x{\rm d}z \\&&+\int_{\Omega}Pu_{2}^{r}{\rm d}x{\rm d}z+\int_{\Omega}Tb_{2}^{r}{\rm d}x{\rm d}z +\int_{\Omega}Mu_{2}^{r}{\rm d}x{\rm d}z+\int_{\Omega}Ub_{2}^{r}{\rm d}x{\rm d}z+\int_{\Omega}Nu_{2}^{r}{\rm d}x{\rm d}z \\ &&+\int_{\Omega}Vb_{2}^{r}{\rm d}x{\rm d}z +\int_{\Omega}Qu_{2}^{r}{\rm d}x{\rm d}z +\int_{\Omega}Wb_{2}^{r}{\rm d}x{\rm d}z = \sum\limits_{j = 1}^{14}I_{j}. \end{eqnarray}
(4.12)

然后开始估计上面等式右端的每一项.

\begin{eqnarray} I_{1}& = & -\int_{\Omega}u_{1}^{r}[\partial_{x}u_{2}^{0}+\rho(z)\partial_{x}\varphi_{2}^{0, 0}+\rho(h-z)\partial_{x}\varphi_{2}^{0, h}]u_{2}^{r}{\rm d}x{\rm d}z\\ &\leq & L^{\frac{1}{2}}\|u_{1}^{r}\|_{L^{2}(0, h)}(\|\partial_{x}u_{2}^{0}\|_{L^{\infty}(\Omega)} +\|\partial_{x}\varphi_{2}^{0, 0}\|_{L^{\infty}(\Omega_{\infty})} +\|\partial_{x}\varphi_{2}^{0, h}\|_{L^{\infty}(\Omega_{\infty})})\|u_{2}^{r}\|_{L^{2}(\Omega)}\\ &\leq & \|u_{2}^{r}\|^{2}_{L^{2}(\Omega)}+C\|u_{1}^{r}\|^{2}_{L^{2}(0, h)}(\|u_{2}^{0}\|^{2}_{H^{2+s}(\Omega)} +\|\partial_{x}\varphi_{2}^{0, 0}\|^{2}_{L^{\infty}(\Omega_{\infty})} +\|\partial_{x}\varphi_{2}^{0, h}\|^{2}_{L^{\infty}(\Omega_{\infty})}), \end{eqnarray}
(4.13)

这里用到了Sobolev嵌入定理: H^{2+s}(\Omega)\circlearrowleft C^{1}(\Omega), s>0 .

同理

\begin{eqnarray} &&I_{2}\leq \|u_{2}^{r}\|^{2}_{L^{2}(\Omega)}+C\|b_{1}^{r}\|^{2}_{L^{2}(0, h)}(\|b_{2}^{0}\|^{2}_{H^{2+s}(\Omega)} +\|\partial_{x}\psi_{2}^{0, 0}\|^{2}_{L^{\infty}(\Omega_{\infty})} +\|\partial_{x}\psi_{2}^{0, h}\|^{2}_{L^{\infty}(\Omega_{\infty})}), \end{eqnarray}
(4.14)

\begin{eqnarray} &&I_{3}\leq \|b_{2}^{r}\|^{2}_{L^{2}(\Omega)}+C\|u_{1}^{r}\|^{2}_{L^{2}(0, h)}(\|b_{2}^{0}\|^{2}_{H^{2+s}(\Omega)} +\|\partial_{x}\psi_{2}^{0, 0}\|^{2}_{L^{\infty}(\Omega_{\infty})} +\|\partial_{x}\psi_{2}^{0, h}\|^{2}_{L^{\infty}(\Omega_{\infty})}), \end{eqnarray}
(4.15)

\begin{eqnarray} &&I_{4}\leq \|b_{2}^{r}\|^{2}_{L^{2}(\Omega)}+C\|b_{1}^{r}\|^{2}_{L^{2}(0, h)}(\|u_{2}^{0}\|^{2}_{H^{2+s}(\Omega)} +\|\partial_{x}\varphi_{2}^{0, 0}\|^{2}_{L^{\infty}(\Omega_{\infty})} +\|\partial_{x}\varphi_{2}^{0, h}\|^{2}_{L^{\infty}(\Omega_{\infty})}). \end{eqnarray}
(4.16)

接下来

\begin{eqnarray} I_{5}& = &\int_{\Omega}\varepsilon_{1}[\partial_{x}^{2}u_{2}^{0}+\partial_{z}^{2}u_{2}^{0}+\rho(z)\partial_{x}^{2}\varphi_{2}^{0, 0} +\rho(h-z)\partial_{x}^{2}\varphi_{2}^{0, h}+\rho''(z)\varphi_{2}^{0, 0} +\rho''(h-z)\varphi_{2}^{0, h}]u_{2}^{r}{\rm d}x{\rm d}z\\& \leq & \varepsilon_{1}(\|\partial^{2}_{x}u_{2}^{0}\|_{L^{2}(\Omega)}+\|\partial^{2}_{z}u_{2}^{0}\|_{L^{2}(\Omega)})\|u_{2}^{r}\|_{L^{2}(\Omega)} +C\varepsilon_{1}(\varepsilon^{*})^{\frac{1}{4}} \\&&\times(\|\partial^{2}_{x}\varphi_{2}^{0, 0}\|_{L^{2}(\Omega_{\infty})} +\|\partial^{2}_{x}\varphi_{2}^{0, h}\|_{L^{2}(\Omega_{\infty})} +\|\varphi_{2}^{0, 0}\|_{L^{2}(\Omega_{\infty})}+\|\varphi_{2}^{0, h}\|_{L^{2}(\Omega_{\infty})})\|u_{2}^{r}\|_{L^{2}(\Omega)} \\&\leq & \|u_{2}^{r}\|^{2}_{L^{2}(\Omega)}+C\varepsilon_{1}^{2}(\|u_{2}^{0}\|^{2}_{H^{2}(\Omega)}+\|\partial^{2}_{x}\varphi_{2}^{0, 0}\|^{2}_{L^{2}(\Omega_{\infty})} +\|\partial^{2}_{x}\varphi_{2}^{0, h}\|^{2}_{L^{2}(\Omega_{\infty})}+\|\varphi_{2}^{0, 0}\|^{2}_{L^{2}(\Omega_{\infty})}\\ &&+\|\varphi_{2}^{0, h}\|^{2}_{L^{2}(\Omega_{\infty})}). \end{eqnarray}
(4.17)

类似地

\begin{eqnarray} I_{6}& = &\int_{\Omega}\varepsilon_{2}[\partial_{x}^{2}b_{2}^{0}+\partial_{z}^{2}b_{2}^{0}+\rho(z)\partial_{x}^{2}\psi_{2}^{0, 0} +\rho(h-z)\partial_{x}^{2}\psi_{2}^{0, h}+\rho''(z)\psi_{2}^{0, 0} +\rho''(h-z)\psi_{2}^{0, h}]b_{2}^{r}{\rm d}x{\rm d}z\\& \leq & \|b_{2}^{r}\|^{2}_{L^{2}(\Omega)}+C\varepsilon_{2}^{2}(\|b_{2}^{0}\|^{2}_{H^{2}(\Omega)}+\|\partial^{2}_{x}\psi_{2}^{0, 0}\|^{2}_{L^{2}(\Omega_{\infty})} +\|\partial^{2}_{x}\psi_{2}^{0, h}\|^{2}_{L^{2}(\Omega_{\infty})}\\ &&+\|\psi_{2}^{0, 0}\|^{2}_{L^{2}(\Omega_{\infty})}+\|\psi_{2}^{0, h}\|^{2}_{L^{2}(\Omega_{\infty})}). \end{eqnarray}
(4.18)

对于 I_{7} ,有

\begin{eqnarray} I_{7}& = &\frac{2\varepsilon_{1}}{\sqrt{\varepsilon^{*}}}\int_{\Omega}[\rho'(z)\partial_{Z}\varphi_{2}^{0, 0} +\rho'(h-z)\partial_{Z^{h}}\varphi_{2}^{0, h}]u_{2}^{r}{\rm d}x{\rm d}z\\& \leq & C(h)\varepsilon_{1}(\varepsilon^{*})^{\frac{1}{4}}\|u_{2}^{r}\|_{L^{2}(\Omega)} \bigg[\bigg(\int_{0}^{L}\int_{\frac{h}{4\sqrt{\varepsilon^{*}}}}^{\frac{3h}{4\sqrt{\varepsilon^{*}}}} |\langle Z\rangle\partial_{Z}\varphi_{2}^{0, 0}|^{2}{\rm d}Z{\rm d}x\bigg)^{\frac{1}{2}} \\&&+\bigg(\int_{0}^{L}\int_{\frac{h}{4\sqrt{\varepsilon^{*}}}}^{\frac{3h}{4\sqrt{\varepsilon^{*}}}} |\langle Z^{h}\rangle\partial_{Z^{h}}\varphi_{2}^{0, h}|^{2}{\rm d}Z^{h}{\rm d}x\bigg)^{\frac{1}{2}}\bigg] \\ &\leq & C(h)\varepsilon_{1}(\varepsilon^{*})^{\frac{1}{4}}\|u_{2}^{r}\|_{L^{2}(\Omega)} (\|\langle Z\rangle\partial_{Z}\varphi_{2}^{0, 0}\|_{L^{2}(\Omega_{\infty})}+\|\langle Z^{h}\rangle\partial_{Z^{h}}\varphi_{2}^{0, h}\|_{L^{2}(\Omega_{\infty})})\\ &\leq & \|u_{2}^{r}\|^{2}_{L^{2}(\Omega)}+C(h)\varepsilon_{1}^{2}(\varepsilon^{*})^{\frac{1}{2}}(\|\langle Z\rangle\partial_{Z}\varphi_{2}^{0, 0}\|^{2}_{L^{2}(\Omega_{\infty})} +\|\langle Z^{h}\rangle\partial_{Z^{h}}\varphi_{2}^{0, h}\|^{2}_{L^{2}(\Omega_{\infty})}). \end{eqnarray}
(4.19)

同理

\begin{eqnarray} I_{8}& = &\frac{2\varepsilon_{2}}{\sqrt{\varepsilon^{*}}}\int_{\Omega}[\rho'(z)\partial_{Z}\psi_{2}^{0, 0} +\rho'(h-z)\partial_{Z^{h}}\psi_{2}^{0, h}]b_{2}^{r}{\rm d}x{\rm d}z\\ & \leq & \|b_{2}^{r}\|^{2}_{L^{2}(\Omega)}+C(h)\varepsilon_{2}^{2}(\varepsilon^{*})^{\frac{1}{2}}(\|\langle Z\rangle\partial_{Z}\psi_{2}^{0, 0}\|^{2}_{L^{2}(\Omega_{\infty})} +\|\langle Z^{h}\rangle\partial_{Z^{h}}\psi_{2}^{0, h}\|^{2}_{L^{2}(\Omega_{\infty})}). \end{eqnarray}
(4.20)

接下来估计 I_{9},

\begin{eqnarray} I_{9}& = &\frac{\varepsilon_{1}-\varepsilon^{*}}{\varepsilon^{*}}\int_{\Omega}[\rho(z)\partial_{Z}^{2}\varphi_{2}^{0, 0} +\rho(h-z)\partial_{Z^{h}}^{2}\varphi_{2}^{0, h}]u_{2}^{r}{\rm d}x{\rm d}z\\&& = -\frac{\varepsilon_{1}-\varepsilon^{*}}{\sqrt{\varepsilon^{*}}}\int_{0}^{L}\int_{0}^{h}[\rho'(z)\partial_{Z}\varphi_{2}^{0, 0} +\rho'(h-z)\partial_{Z^{h}}\varphi_{2}^{0, h}]u_{2}^{r}{\rm d}z{\rm d}x\\ && -\frac{\varepsilon_{1}-\varepsilon^{*}}{\sqrt{\varepsilon^{*}}}\int_{0}^{L}\int_{0}^{h}[\rho(z)\partial_{Z}\varphi_{2}^{0, 0} -\rho(h-z)\partial_{Z^{h}}\varphi_{2}^{0, h}]\partial_{z}u_{2}^{r}{\rm d}z{\rm d}x \\ & \leq & C(h)\frac{|\varepsilon_{1}-\varepsilon^{*}|}{(\varepsilon^{*})^{\frac{1}{4}}} (\|\partial_{Z}\varphi_{2}^{0, 0}\|_{L^{2}(\Omega_{\infty})}+\|\partial_{Z^{h}}\varphi_{2}^{0, h}\|_{L^{2}(\Omega_{\infty})}) \|u_{2}^{r}\|_{L^{2}(\Omega)}\\ && +\frac{|\varepsilon_{1}-\varepsilon^{*}|}{(\varepsilon^{*})^{\frac{1}{4}}} (\|\partial_{Z}\varphi_{2}^{0, 0}\|_{L^{2}(\Omega_{\infty})}+\|\partial_{Z^{h}}\varphi_{2}^{0, h}\|_{L^{2}(\Omega_{\infty})}) \|\partial_{z}u_{2}^{r}\|_{L^{2}(\Omega)}\\ & \leq & \|u_{2}^{r}\|^{2}_{L^{2}(\Omega)}+\frac{\varepsilon_{1}}{2}\|\partial_{z}u_{2}^{r}\|^{2}_{L^{2}(\Omega)} +C(h)\frac{(\varepsilon_{1}-\varepsilon^{*})^{2}}{\sqrt{\varepsilon^{*}}\varepsilon_{1}} (\|\partial_{Z}\varphi_{2}^{0, 0}\|^{2}_{L^{2}(\Omega_{\infty})}\\ &&+\|\partial_{Z^{h}}\varphi_{2}^{0, h}\|^{2}_{L^{2}(\Omega_{\infty})}). \end{eqnarray}
(4.21)

同理

\begin{eqnarray} I_{10}& = &\frac{\varepsilon_{2}-\varepsilon^{*}}{\varepsilon^{*}}\int_{\Omega}[\rho(z)\partial_{Z}^{2}\psi_{2}^{0, 0} +\rho(h-z)\partial_{Z^{h}}^{2}\psi_{2}^{0, h}]b_{2}^{r}{\rm d}x{\rm d}z\\ &\leq & \|b_{2}^{r}\|^{2}_{L^{2}(\Omega)}+\frac{\varepsilon_{2}}{2}\|\partial_{z}b_{2}^{r}\|^{2}_{L^{2}(\Omega)} +C(h)\frac{(\varepsilon_{2}-\varepsilon^{*})^{2}}{\sqrt{\varepsilon^{*}}\varepsilon_{2}} (\|\partial_{Z}\psi_{2}^{0, 0}\|^{2}_{L^{2}(\Omega_{\infty})}、、&&+\|\partial_{Z^{h}}\psi_{2}^{0, h}\|^{2}_{L^{2}(\Omega_{\infty})}). \end{eqnarray}
(4.22)

对于 I_{11} ,有

\begin{eqnarray} I_{11}& = &-\sqrt{\varepsilon^{*}}\int_{\Omega}[\rho(z)Z(\partial_{z}u_{1}^{0}|_{z = \xi_{1}}\partial_{x}\varphi_{2}^{0, 0} +\partial_{x}\partial_{z}u_{2}^{0}|_{z = \xi_{3}}\varphi_{1}^{0, 0}-\partial_{z}b_{1}^{0}|_{z = \xi_{5}}\partial_{x}\psi_{2}^{0, 0} \\&&-\partial_{x}\partial_{z}b_{2}^{0}|_{z = \xi_{7}}\psi_{1}^{0, 0}) -\rho(h-z)Z^{h}(\partial_{z}u_{1}^{0}|_{z = \xi_{2}}\partial_{x}\varphi_{2}^{0, h} +\partial_{x}\partial_{z}u_{2}^{0}|_{z = \xi_{4}}\varphi_{1}^{0, h}\\&&-\partial_{z}b_{1}^{0}|_{z = \xi_{6}}\partial_{x}\psi_{2}^{0, h} -\partial_{x}\partial_{z}b_{2}^{0}|_{z = \xi_{8}}\psi_{1}^{0, h})]u_{2}^{r}{\rm d}x{\rm d}z\\& \leq & C(\varepsilon^{*})^{\frac{3}{4}}\|u_{2}^{r}\|_{L^{2}(\Omega)}(|\partial_{z}u_{1}^{0}|_{z = \xi_{1}}| \|\langle Z\rangle\partial_{x}\varphi_{2}^{0, 0}\|_{L^{2}(\Omega_{\infty})} \\&&+\|\partial_{x}\partial_{z}u_{2}^{0}|_{z = \xi_{3}}\|_{L^{\infty}(0, L)} \|\langle Z\rangle\varphi_{1}^{0, 0}\|_{L^{2}(0, +\infty)} +|\partial_{z}b_{1}^{0}|_{z = \xi_{5}}| \|\langle Z\rangle\partial_{x}\psi_{2}^{0, 0}\|_{L^{2}(\Omega_{\infty})} \\&&+\|\partial_{x}\partial_{z}b_{2}^{0}|_{z = \xi_{7}}\|_{L^{\infty}(0, L)} \|\langle Z\rangle\psi_{1}^{0, 0}\|_{L^{2}(0, +\infty)} +|\partial_{z}u_{1}^{0}|_{z = \xi_{2}}| \|\langle Z^{h}\rangle\partial_{x}\varphi_{2}^{0, h}\|_{L^{2}(\Omega_{\infty})} \\&&+\|\partial_{x}\partial_{z}u_{2}^{0}|_{z = \xi_{4}}\|_{L^{\infty}(0, L)} \|\langle Z^{h}\rangle\varphi_{1}^{0, h}\|_{L^{2}(0, +\infty)} +|\partial_{z}b_{1}^{0}|_{z = \xi_{6}}| \|\langle Z^{h}\rangle\partial_{x}\psi_{2}^{0, h}\|_{L^{2}(\Omega_{\infty})} \\&&+\|\partial_{x}\partial_{z}b_{2}^{0}|_{z = \xi_{8}}\|_{L^{\infty}(0, L)} \|\langle Z^{h}\rangle\psi_{1}^{0, h}\|_{L^{2}(0, +\infty)})\\ & \leq & \|u_{2}^{r}\|^{2}_{L^{2}(\Omega)}+C(\varepsilon^{*})^{\frac{3}{2}}(\|u_{1}^{0}\|^{2}_{H^{2}(0, h)} \|\langle Z\rangle\partial_{x}\varphi_{2}^{0, 0}\|^{2}_{L^{2}(\Omega_{\infty})} \\&&+\|u_{2}^{0}\|^{2}_{H^{3+s}(\Omega)} \|\langle Z\rangle\varphi_{1}^{0, 0}\|^{2}_{L^{2}(0, +\infty)} +\|b_{1}^{0}\|^{2}_{H^{2}(0, h)} \|\langle Z\rangle\partial_{x}\psi_{2}^{0, 0}\|^{2}_{L^{2}(\Omega_{\infty})} \\&&+\|b_{2}^{0}\|^{2}_{H^{3+s}(\Omega)} \|\langle Z\rangle\psi_{1}^{0, 0}\|^{2}_{L^{2}(0, +\infty)}+\|u_{1}^{0}\|^{2}_{H^{2}(0, h)} \|\langle Z^{h}\rangle\partial_{x}\varphi_{2}^{0, h}\|^{2}_{L^{2}(\Omega_{\infty})} \\&&+\|u_{2}^{0}\|^{2}_{H^{3+s}(\Omega)} \|\langle Z^{h}\rangle\varphi_{1}^{0, h}\|^{2}_{L^{2}(0, +\infty)} +\|b_{1}^{0}\|^{2}_{H^{2}(0, h)} \|\langle Z^{h}\rangle\partial_{x}\psi_{2}^{0, h}\|^{2}_{L^{2}(\Omega_{\infty})} \\ &&+\|b_{2}^{0}\|^{2}_{H^{3+s}(\Omega)} \|\langle Z^{h}\rangle\psi_{1}^{0, h}\|^{2}_{L^{2}(0, +\infty)}), \end{eqnarray}
(4.23)

这里用到了Sobolev嵌入定理.

同理对于 I_{12}

\begin{eqnarray} I_{12}& = &-\sqrt{\varepsilon^{*}}\int_{\Omega}[\rho(z)Z(\partial_{z}u_{1}^{0}|_{z = \xi_{1}}\partial_{x}\psi_{2}^{0, 0} +\partial_{x}\partial_{z}b_{2}^{0}|_{z = \xi_{7}}\varphi_{1}^{0, 0}-\partial_{z}b_{1}^{0}|_{z = \xi_{5}}\partial_{x}\varphi_{2}^{0, 0} \\&&-\partial_{x}\partial_{z}u_{2}^{0}|_{z = \xi_{3}}\psi_{1}^{0, 0}) -\rho(h-z)Z^{h}(\partial_{z}u_{1}^{0}|_{z = \xi_{2}}\partial_{x}\psi_{2}^{0, h} +\partial_{x}\partial_{z}b_{2}^{0}|_{z = \xi_{8}}\varphi_{1}^{0, h}\\&&-\partial_{z}b_{1}^{0}|_{z = \xi_{6}}\partial_{x}\varphi_{2}^{0, h} -\partial_{x}\partial_{z}u_{2}^{0}|_{z = \xi_{4}}\psi_{1}^{0, h})]b_{2}^{r}{\rm d}x{\rm d}z \\ & \leq & \|b_{2}^{r}\|^{2}_{L^{2}(\Omega)}+C(\varepsilon^{*})^{\frac{3}{2}}(\|u_{1}^{0}\|^{2}_{H^{2}(0, h)} \|\langle Z\rangle\partial_{x}\psi_{2}^{0, 0}\|^{2}_{L^{2}(\Omega_{\infty})} \\&&+\|b_{2}^{0}\|^{2}_{H^{3+s}(\Omega)} \|\langle Z\rangle\varphi_{1}^{0, 0}\|^{2}_{L^{2}(0, +\infty)} +\|b_{1}^{0}\|^{2}_{H^{2}(0, h)} \|\langle Z\rangle\partial_{x}\varphi_{2}^{0, 0}\|^{2}_{L^{2}(\Omega_{\infty})} \\&&+\|u_{2}^{0}\|^{2}_{H^{3+s}(\Omega)} \|\langle Z\rangle\psi_{1}^{0, 0}\|^{2}_{L^{2}(0, +\infty)}+\|u_{1}^{0}\|^{2}_{H^{2}(0, h)} \|\langle Z^{h}\rangle\partial_{x}\psi_{2}^{0, h}\|^{2}_{L^{2}(\Omega_{\infty})} \\&&+\|b_{2}^{0}\|^{2}_{H^{3+s}(\Omega)} \|\langle Z^{h}\rangle\varphi_{1}^{0, h}\|^{2}_{L^{2}(0, +\infty)} +\|b_{1}^{0}\|^{2}_{H^{2}(0, h)} \|\langle Z^{h}\rangle\partial_{x}\varphi_{2}^{0, h}\|^{2}_{L^{2}(\Omega_{\infty})} \\ &&+\|u_{2}^{0}\|^{2}_{H^{3+s}(\Omega)} \|\langle Z^{h}\rangle\psi_{1}^{0, h}\|^{2}_{L^{2}(0, +\infty)}). \end{eqnarray}
(4.24)

接下来对于 I_{13},

\begin{eqnarray} I_{13}& = &\int_{0}^{L}\int_{\frac{h}{4}}^{\frac{3h}{4}}\rho(z)(\rho(z)-1)(-\varphi_{1}^{0, 0}\partial_{x}\varphi_{2}^{0, 0} +\psi_{1}^{0, 0}\partial_{x}\psi_{2}^{0, 0})u_{2}^{r}{\rm d}z{\rm d}x\\&& -\int_{0}^{L}\int_{\frac{h}{4}}^{\frac{3h}{4}}\rho(h-z)(\rho(h-z)-1)(\varphi_{1}^{0, h}\partial_{x}\varphi_{2}^{0, h} -\psi_{1}^{0, h}\partial_{x}\psi_{2}^{0, h})u_{2}^{r}{\rm d}z{\rm d}x\\ & \leq & C(h)(\varepsilon^{*})^{\frac{3}{4}}\|u_{2}^{r}\|_{L^{2}(\Omega)} (\|\varphi_{1}^{0, 0}\|_{L^{\infty}(0, +\infty)}\|\langle Z\rangle \partial_{x}\varphi_{2}^{0, 0}\|_{L^{2}(\Omega_{\infty})} \\&&+\|\psi_{1}^{0, 0}\|_{L^{\infty}(0, +\infty)}\|\langle Z\rangle \partial_{x}\psi_{2}^{0, 0}\|_{L^{2}(\Omega_{\infty})} +\|\varphi_{1}^{0, h}\|_{L^{\infty}(0, +\infty)}\|\langle Z^{h}\rangle \partial_{x}\varphi_{2}^{0, h}\|_{L^{2}(\Omega_{\infty})} \\&&+\|\psi_{1}^{0, h}\|_{L^{\infty}(0, +\infty)}\|\langle Z^{h}\rangle \partial_{x}\psi_{2}^{0, h}\|_{L^{2}(\Omega_{\infty})})\\& \leq & \|u_{2}^{r}\|^{2}_{L^{2}(\Omega)}+C(h)(\varepsilon^{*})^{\frac{3}{2}}(\|\varphi_{1}^{0, 0}\|^{2}_{L^{\infty}(0, +\infty)}\|\langle Z\rangle \partial_{x}\varphi_{2}^{0, 0}\|^{2}_{L^{2}(\Omega_{\infty})} \\&&+\|\psi_{1}^{0, 0}\|^{2}_{L^{\infty}(0, +\infty)}\|\langle Z\rangle \partial_{x}\psi_{2}^{0, 0}\|^{2}_{L^{2}(\Omega_{\infty})} +\|\varphi_{1}^{0, h}\|^{2}_{L^{\infty}(0, +\infty)}\|\langle Z^{h}\rangle \partial_{x}\varphi_{2}^{0, h}\|^{2}_{L^{2}(\Omega_{\infty})} \\ &&+\|\psi_{1}^{0, h}\|^{2}_{L^{\infty}(0, +\infty)}\|\langle Z^{h}\rangle \partial_{x}\psi_{2}^{0, h}\|^{2}_{L^{2}(\Omega_{\infty})}). \end{eqnarray}
(4.25)

同理对于最后一项可以得到

\begin{eqnarray} I_{14}& = &\int_{0}^{L}\int_{\frac{h}{4}}^{\frac{3h}{4}}\rho(z)(\rho(z)-1) (-\varphi_{1}^{0, 0}\partial_{x}\psi_{2}^{0, 0}+\psi_{1}^{0, 0}\partial_{x}\varphi_{2}^{0, 0})b_{2}^{r}{\rm d}z{\rm d}x\\&& -\int_{0}^{L}\int_{\frac{h}{4}}^{\frac{3h}{4}}\rho(h-z)(\rho(h-z)-1) (\varphi_{1}^{0, h}\partial_{x}\psi_{2}^{0, h}-\psi_{1}^{0, h}\partial_{x}\varphi_{2}^{0, h})b_{2}^{r}{\rm d}z{\rm d}x\\& \leq & \|b_{2}^{r}\|^{2}_{L^{2}(\Omega)}+C(h)(\varepsilon^{*})^{\frac{3}{2}}(\|\varphi_{1}^{0, 0}\|^{2}_{L^{\infty}(0, +\infty)}\|\langle Z\rangle \partial_{x}\psi_{2}^{0, 0}\|^{2}_{L^{2}(\Omega_{\infty})} \\&&+\|\psi_{1}^{0, 0}\|^{2}_{L^{\infty}(0, +\infty)}\|\langle Z\rangle \partial_{x}\varphi_{2}^{0, 0}\|^{2}_{L^{2}(\Omega_{\infty})} +\|\varphi_{1}^{0, h}\|^{2}_{L^{\infty}(0, +\infty)}\|\langle Z^{h}\rangle \partial_{x}\psi_{2}^{0, h}\|^{2}_{L^{2}(\Omega_{\infty})} \\ &&+\|\psi_{1}^{0, h}\|^{2}_{L^{\infty}(0, +\infty)}\|\langle Z^{h}\rangle \partial_{x}\varphi_{2}^{0, h}\|^{2}_{L^{2}(\Omega_{\infty})}). \end{eqnarray}
(4.26)

将(4.13)–(4.26)式代入到(4.12)式中,应用Gronwall不等式,命题3.1–3.3,以及(4.10)–(4.11)式,最终可以获得

\begin{eqnarray} &&\|u_{2}^{r}\|_{L^{\infty}(0, T;L^{2}(\Omega))}+\|b_{2}^{r}\|_{L^{\infty}(0, T;L^{2}(\Omega))} +\sqrt{\varepsilon_{1}}(\|\partial_{x}u_{2}^{r}\|_{L^{2}((0, T)\times\Omega)} +\|\partial_{z}u_{2}^{r}\|_{L^{2}((0, T)\times\Omega)})\\&& +\sqrt{\varepsilon_{2}}(\|\partial_{x}b_{2}^{r}\|_{L^{2}((0, T)\times\Omega)} +\|\partial_{z}b_{2}^{r}\|_{L^{2}((0, T)\times\Omega)})\\ & \leq & C\max\bigg\{\frac{|\varepsilon_{1}-\varepsilon^{*}|}{(\varepsilon^{*})^{\frac{1}{4}}(\varepsilon_{1})^{\frac{1}{2}}}, \frac{|\varepsilon_{2}-\varepsilon^{*}|}{(\varepsilon^{*})^{\frac{1}{4}}(\varepsilon_{2})^{\frac{1}{2}}}, \varepsilon_{1}, \varepsilon_{2}, (\varepsilon^{*})^{\frac{3}{4}}\bigg\}. \end{eqnarray}
(4.27)

这样就完成了定理2.1的证明.

4.2 定理2.2的证明

我们将证明分为4步.

第1步  方程(4.1)两端同时乘上 -\partial_{z}^{2}u_{1}^{r} ,然后在 [0, h] 上积分,可以得到

\begin{eqnarray} \frac{1}{2}\frac{\rm d}{{\rm d}t}\|\partial_{z}u_{1}^{r}\|_{L^{2}(0, h)}^{2}+\varepsilon_{1}\|\partial_{z}^{2}u_{1}^{r}\|_{L^{2}(0, h)}^{2} = \int_{0}^{h}(A+B+Y)(-\partial_{z}^{2}u_{1}^{r}){\rm d}z. \end{eqnarray}
(4.28)

开始估计右端的每一项.

\begin{eqnarray} \int_{0}^{h}A(-\partial_{z}^{2}u_{1}^{r}){\rm d}z & = &-\varepsilon_{1}\int_{0}^{h}\partial_{z}^{2}u_{1}^{0}\partial_{z}^{2}u_{1}^{r}{\rm d}z -\varepsilon_{1}\int_{\frac{h}{4}}^{\frac{3h}{4}}[\rho''(z)\varphi_{1}^{0, 0}+ \rho''(h-z)\varphi_{1}^{0, h}]\partial_{z}^{2}u_{1}^{r}{\rm d}z\\& \leq & \varepsilon_{1}\|\partial_{z}^{2}u_{1}^{0}\|_{L^{2}(0, h)}\|\partial_{z}^{2}u_{1}^{r}\|_{L^{2}(0, h)} \\&& + C(h)\varepsilon_{1}(\varepsilon^{*})^{\frac{1}{4}}(\|\varphi_{1}^{0, 0}\|_{L^{2}(0, +\infty)} +\|\varphi_{1}^{0, h}\|_{L^{2}(0, +\infty)})\|\partial_{z}^{2}u_{1}^{r}\|_{L^{2}(0, h)}\\ & \leq & \frac{\varepsilon_{1}}{6}\|\partial_{z}^{2}u_{1}^{r}\|_{L^{2}(0, h)}^{2}+C(h)\varepsilon_{1}(\|u_{1}^{0}\|^{2}_{H^{2}(0, h)} +\|\varphi_{1}^{0, 0}\|^{2}_{L^{2}(0, +\infty)} \\&& +\|\varphi_{1}^{0, h}\|^{2}_{L^{2}(0, +\infty)}). \end{eqnarray}
(4.29)

\begin{eqnarray} \int_{0}^{h}B(-\partial_{z}^{2}u_{1}^{r}){\rm d}z & = &-\frac{2\varepsilon_{1}}{\sqrt{\varepsilon^{*}}}\int_{\frac{h}{4}}^{\frac{3h}{4}}[\rho'(z)\partial_{Z}\varphi_{1}^{0, 0}+ \rho'(h-z)\partial_{Z^{h}}\varphi_{1}^{0, h}]\partial_{z}^{2}u_{1}^{r}{\rm d}z\\ & \leq & C(h)\varepsilon_{1}(\varepsilon^{*})^{\frac{1}{4}}\|\partial_{z}^{2}u_{1}^{r}\|_{L^{2}(0, h)}(\|\langle Z\rangle \partial_{Z}\varphi_{1}^{0, 0}\|_{L^{2}(0, +\infty)}\\ &&+\|\langle Z^{h}\rangle \partial_{Z^{h}}\varphi_{1}^{0, h}\|_{L^{2}(0, +\infty)})\\& \leq & \frac{\varepsilon_{1}}{6}\|\partial_{z}^{2}u_{1}^{r}\|_{L^{2}(0, h)}^{2}+C(h)\varepsilon_{1}(\varepsilon^{*})^{\frac{1}{2}}(\|\langle Z\rangle \partial_{Z}\varphi_{1}^{0, 0}\|^{2}_{L^{2}(0, +\infty)}\\ &&+\|\langle Z^{h}\rangle \partial_{Z^{h}}\varphi_{1}^{0, h}\|^{2}_{L^{2}(0, +\infty)}). \end{eqnarray}
(4.30)

\begin{eqnarray} \int_{0}^{h}Y(-\partial_{z}^{2}u_{1}^{r}){\rm d}z & = &-\frac{\varepsilon_{1}-\varepsilon^{*}}{\varepsilon^{*}}\int_{0}^{h}[\rho(z)\partial_{Z}^{2}\varphi_{1}^{0, 0}+ \rho(h-z)\partial_{Z^{h}}^{2}\varphi_{1}^{0, h}]\partial_{z}^{2}u_{1}^{r}{\rm d}z\\& \leq & \frac{|\varepsilon_{1}-\varepsilon^{*}|}{(\varepsilon^{*})^{\frac{3}{4}}}\|\partial_{z}^{2}u_{1}^{r}\|_{L^{2}(0, h)} (\|\partial_{Z}^{2}\varphi_{1}^{0, 0}\|_{L^{2}(0, +\infty)}+\|\partial_{Z^{h}}^{2}\varphi_{1}^{0, h}\|_{L^{2}(0, +\infty)})\\& \leq & \frac{\varepsilon_{1}}{6}\|\partial_{z}^{2}u_{1}^{r}\|_{L^{2}(0, h)}^{2}+C\frac{(\varepsilon_{1}-\varepsilon^{*})^{2}} {(\varepsilon^{*})^{\frac{3}{2}}\varepsilon_{1}}(\|\partial_{Z}^{2}\varphi_{1}^{0, 0}\|^{2}_{L^{2}(0, +\infty)}\\ &&+\|\partial_{Z^{h}}^{2}\varphi_{1}^{0, h}\|^{2}_{L^{2}(0, +\infty)}). \end{eqnarray}
(4.31)

将(4.29)–(4.31)式代入到(4.28)式中,可以获得

\begin{eqnarray} && \frac{1}{2}\frac{\rm d}{{\rm d}t}\|\partial_{z}u_{1}^{r}\|_{L^{2}(0, h)}^{2} +\frac{\varepsilon_{1}}{2}\|\partial_{z}^{2}u_{1}^{r}\|_{L^{2}(0, h)}^{2}\\& \leq &C\max\{\frac{(\varepsilon_{1}-\varepsilon^{*})^{2}} {(\varepsilon^{*})^{\frac{3}{2}}\varepsilon_{1}}, \varepsilon_{1}\}(\|u_{1}^{0}\|^{2}_{H^{2}(0, h)} +\|\varphi_{1}^{0, 0}\|^{2}_{L^{2}(0, +\infty)} +\|\varphi_{1}^{0, h}\|^{2}_{L^{2}(0, +\infty)}\\&&+\|\langle Z\rangle \partial_{Z}\varphi_{1}^{0, 0}\|^{2}_{L^{2}(0, +\infty)}+\|\langle Z^{h}\rangle \partial_{Z^{h}}\varphi_{1}^{0, h}\|^{2}_{L^{2}(0, +\infty)} +\|\partial_{Z}^{2}\varphi_{1}^{0, 0}\|^{2}_{L^{2}(0, +\infty)}\\ &&+\|\partial_{Z^{h}}^{2}\varphi_{1}^{0, h}\|^{2}_{L^{2}(0, +\infty)}). \end{eqnarray}
(4.32)

关于时间积分,有

\begin{eqnarray} \|\partial_{z}u_{1}^{r}\|_{L^{\infty}(0, T;L^{2}(0, h))} +\sqrt{\varepsilon_{1}}\|\partial_{z}^{2}u_{1}^{r}\|_{L^{2}((0, T)\times(0, h))} \leq C\max \bigg\{\frac{|\varepsilon_{1}-\varepsilon^{*}|} {(\varepsilon^{*})^{\frac{3}{4}}(\varepsilon_{1})^{\frac{1}{2}}}, (\varepsilon_{1})^{\frac{1}{2}}\bigg\}. \end{eqnarray}
(4.33)

结合(4.10)式,可以得到

\begin{eqnarray} \|u_{1}^{r}\|_{L^{\infty}((0, T)\times(0, h))} &\leq& \sqrt{2} \|u_{1}^{r}\|^{\frac{1}{2}}_{L^{\infty}(0, T;L^{2}(0, h))}\|\partial_{z}u_{1}^{r}\|^{\frac{1}{2}}_{L^{\infty}(0, T;L^{2}(0, h))} \\ & \leq & C\max\bigg\{\frac{|\varepsilon_{1}-\varepsilon^{*}|^{\frac{1}{2}}}{(\varepsilon^{*})^{\frac{1}{8}}(\varepsilon_{1})^{\frac{1}{4}}}, (\varepsilon_{1})^{\frac{1}{2}}\bigg\} \max\bigg\{\frac{|\varepsilon_{1}-\varepsilon^{*}|^{\frac{1}{2}}} {(\varepsilon^{*})^{\frac{3}{8}}(\varepsilon_{1})^{\frac{1}{4}}}, (\varepsilon_{1})^{\frac{1}{4}}\bigg\}. \end{eqnarray}
(4.34)

对于 b_{1}^{r} ,利用类似的方法可以得到

\begin{equation} \|b_{1}^{r}\|_{L^{\infty}((0, T)\times(0, h))} \leq C\max\bigg\{\frac{|\varepsilon_{2}-\varepsilon^{*}|^{\frac{1}{2}}}{(\varepsilon^{*})^{\frac{1}{8}}(\varepsilon_{2})^{\frac{1}{4}}}, (\varepsilon_{2})^{\frac{1}{2}}\bigg\} \max\bigg\{\frac{|\varepsilon_{2}-\varepsilon^{*}|^{\frac{1}{2}}} {(\varepsilon^{*})^{\frac{3}{8}}(\varepsilon_{2})^{\frac{1}{4}}}, (\varepsilon_{2})^{\frac{1}{4}}\bigg\}. \end{equation}
(4.35)

第2步  对方程组(4.3)分别作用算子 \partial_{x} \partial_{x}^{2} ,我们会发现得到的两个新方程组同方程组(4.3)具有类似的结构.重复在证明定理2.1中关于 u_{2}^{r} b_{2}^{r} L^{\infty}(0, T;L^{2}(\Omega)) 范数估计的过程,我们可以得到

\begin{eqnarray} &&\|\partial_{x}u_{2}^{r}\|_{L^{\infty}(0, T;L^{2}(\Omega))}+\|\partial_{x}b_{2}^{r}\|_{L^{\infty}(0, T;L^{2}(\Omega))} \\ &\leq & C\max\bigg\{\frac{|\varepsilon_{1}-\varepsilon^{*}|}{(\varepsilon^{*})^{\frac{1}{4}}(\varepsilon_{1})^{\frac{1}{2}}}, \frac{|\varepsilon_{2}-\varepsilon^{*}|}{(\varepsilon^{*})^{\frac{1}{4}}(\varepsilon_{2})^{\frac{1}{2}}}, \varepsilon_{1}, \varepsilon_{2}, (\varepsilon^{*})^{\frac{3}{4}}\bigg\}, \end{eqnarray}
(4.36)

\begin{eqnarray} &&\|\partial_{x}^{2}u_{2}^{r}\|_{L^{\infty}(0, T;L^{2}(\Omega))}+\|\partial_{x}^{2}b_{2}^{r}\|_{L^{\infty}(0, T;L^{2}(\Omega))} \\ &\leq & C\max\bigg\{\frac{|\varepsilon_{1}-\varepsilon^{*}|}{(\varepsilon^{*})^{\frac{1}{4}}(\varepsilon_{1})^{\frac{1}{2}}}, \frac{|\varepsilon_{2}-\varepsilon^{*}|}{(\varepsilon^{*})^{\frac{1}{4}}(\varepsilon_{2})^{\frac{1}{2}}}, \varepsilon_{1}, \varepsilon_{2}, (\varepsilon^{*})^{\frac{3}{4}}\bigg\}. \end{eqnarray}
(4.37)

第3步  在方程组(4.3)的第一个方程两端同时乘上 -\partial_{z}^{2}u_{2}^{r} 以及第二个方程两端同时乘上 -\partial_{z}^{2}b_{2}^{r} ,然后在 \Omega 上积分,有

\begin{eqnarray} && \frac{1}{2}\frac{\rm d}{{\rm d}t}(\|\partial_{z}u_{2}^{r}\|_{L^{2}(\Omega)}^{2} +\|\partial_{z}b_{2}^{r}\|_{L^{2}(\Omega)}^{2})+\varepsilon_{1}(\|\partial_{x}\partial_{z}u_{2}^{r}\|_{L^{2}(\Omega)}^{2} +\|\partial_{z}^{2}u_{2}^{r}\|_{L^{2}(\Omega)}^{2}) \\ &&+\varepsilon_{2}(\|\partial_{x}\partial_{z}b_{2}^{r}\|_{L^{2}(\Omega)}^{2}+\|\partial_{z}^{2}b_{2}^{r}\|_{L^{2}(\Omega)}^{2})\\ & = & \int_{\Omega}(u_{1}^{r}\partial_{x}u_{2}^{app}-b_{1}^{r}\partial_{x}b_{2}^{app}+u_{1}\partial_{x}u_{2}^{r} -b_{1}\partial_{x}b_{2}^{r}-K-P-M-N-Q)\partial_{z}^{2}u_{2}^{r}{\rm d}x{\rm d}z\\&& +\int_{\Omega}(u_{1}^{r}\partial_{x}b_{2}^{app}-b_{1}^{r}\partial_{x}u_{2}^{app} +u_{1}\partial_{x}b_{2}^{r}-b_{1}\partial_{x}u_{2}^{r}-R-T-U-V-W)\partial_{z}^{2}b_{2}^{r}{\rm d}x{\rm d}z\\& \leq& \|\partial_{z}^{2}u_{2}^{r}\|_{L^{2}(\Omega)} [L^{\frac{1}{2}}\|u_{1}^{r}\|_{L^{2}(0, h)}(\|\partial_{x}u_{2}^{0}\|_{L^{\infty}(\Omega)}+\|\partial_{x}\varphi_{2}^{0, 0}\|_{L^{\infty}(\Omega_{\infty})} +\|\partial_{x}\varphi_{2}^{0, h}\|_{L^{\infty}(\Omega_{\infty})})\\&& +L^{\frac{1}{2}}\|b_{1}^{r}\|_{L^{2}(0, h)}(\|\partial_{x}b_{2}^{0}\|_{L^{\infty}(\Omega)}+\|\partial_{x}\psi_{2}^{0, 0}\|_{L^{\infty}(\Omega_{\infty})} +\|\partial_{x}\psi_{2}^{0, h}\|_{L^{\infty}(\Omega_{\infty})}) \\&&+\|u_{1}\|_{L^{\infty}(0, h)}\|\partial_{x}u_{2}^{r}\|_{L^{2}(\Omega)} +\|b_{1}\|_{L^{\infty}(0, h)}\|\partial_{x}b_{2}^{r}\|_{L^{2}(\Omega)} +\|K\|_{L^{2}(\Omega)}+\|P\|_{L^{2}(\Omega)}\\&&+\|M\|_{L^{2}(\Omega)}+ \|N\|_{L^{2}(\Omega)}+\|Q\|_{L^{2}(\Omega)}] +\|\partial_{z}^{2}b_{2}^{r}\|_{L^{2}(\Omega)}[L^{\frac{1}{2}}\|u_{1}^{r}\|_{L^{2}(0, h)}(\|\partial_{x}b_{2}^{0}\|_{L^{\infty}(\Omega)} \\&&+\|\partial_{x}\psi_{2}^{0, 0}\|_{L^{\infty}(\Omega_{\infty})} +\|\partial_{x}\psi_{2}^{0, h}\|_{L^{\infty}(\Omega_{\infty})}) +L^{\frac{1}{2}}\|b_{1}^{r}\|_{L^{2}(0, h)}(\|\partial_{x}u_{2}^{0}\|_{L^{\infty}(\Omega)}+\|\partial_{x}\varphi_{2}^{0, 0}\|_{L^{\infty}(\Omega_{\infty})} \\&&+\|\partial_{x}\varphi_{2}^{0, h}\|_{L^{\infty}(\Omega_{\infty})}) +\|u_{1}\|_{L^{\infty}(0, h)}\|\partial_{x}b_{2}^{r}\|_{L^{2}(\Omega)} +\|b_{1}\|_{L^{\infty}(0, h)}\|\partial_{x}u_{2}^{r}\|_{L^{2}(\Omega)} +\|R\|_{L^{2}(\Omega)} \\ && +\|T\|_{L^{2}(\Omega)}+\|U\|_{L^{2}(\Omega)}+ \|V\|_{L^{2}(\Omega)}+\|W\|_{L^{2}(\Omega)}] \\ & \leq & \frac{\varepsilon_{1}}{2}\|\partial_{z}^{2}u_{2}^{r}\|^{2}_{L^{2}(\Omega)} +\frac{\varepsilon_{2}}{2}\|\partial_{z}^{2}b_{2}^{r}\|^{2}_{L^{2}(\Omega)} +\frac{C}{\varepsilon_{1}}[\|u_{1}^{r}\|^{2}_{L^{2}(0, h)}(\|u_{2}^{0}\|^{2}_{H^{2+s}(\Omega)}+\|\partial_{x}\varphi_{2}^{0, 0}\|^{2}_{L^{\infty}(\Omega_{\infty})} \\&&+\|\partial_{x}\varphi_{2}^{0, h}\|^{2}_{L^{\infty}(\Omega_{\infty})}) +\|b_{1}^{r}\|^{2}_{L^{2}(0, h)}(\|b_{2}^{0}\|^{2}_{H^{2+s}(\Omega)}+\|\partial_{x}\psi_{2}^{0, 0}\|^{2}_{L^{\infty}(\Omega_{\infty})} \\&&+\|\partial_{x}\psi_{2}^{0, h}\|^{2}_{L^{\infty}(\Omega_{\infty})}) +\|u_{1}\|^{2}_{L^{\infty}(0, h)}\|\partial_{x}u_{2}^{r}\|^{2}_{L^{2}(\Omega)} +\|b_{1}\|^{2}_{L^{\infty}(0, h)}\|\partial_{x}b_{2}^{r}\|^{2}_{L^{2}(\Omega)}]\\&& +\frac{C}{\varepsilon_{2}}[\|u_{1}^{r}\|^{2}_{L^{2}(0, h)}(\|b_{2}^{0}\|^{2}_{H^{2+s}(\Omega)}+\|\partial_{x}\psi_{2}^{0, 0}\|^{2}_{L^{\infty}(\Omega_{\infty})} +\|\partial_{x}\psi_{2}^{0, h}\|^{2}_{L^{\infty}(\Omega_{\infty})}) \\&&+\|b_{1}^{r}\|^{2}_{L^{2}(0, h)}(\|u_{2}^{0}\|^{2}_{H^{2+s}(\Omega)}+\|\partial_{x}\varphi_{2}^{0, 0}\|^{2}_{L^{\infty}(\Omega_{\infty})} +\|\partial_{x}\varphi_{2}^{0, h}\|^{2}_{L^{\infty}(\Omega_{\infty})}) \\&&+\|u_{1}\|^{2}_{L^{\infty}(0, h)}\|\partial_{x}b_{2}^{r}\|^{2}_{L^{2}(\Omega)} +\|b_{1}\|^{2}_{L^{\infty}(0, h)}\|\partial_{x}u_{2}^{r}\|^{2}_{L^{2}(\Omega)}]\\&&+C\varepsilon_{1} (\|u_{2}^{0}\|^{2}_{H^{2}(\Omega)}+\|\partial_{x}^{2}\varphi_{2}^{0, 0}\|^{2}_{L^{2}(\Omega_{\infty})} +\|\partial_{x}^{2}\varphi_{2}^{0, h}\|^{2}_{L^{2}(\Omega_{\infty})} +\|\varphi_{2}^{0, 0}\|^{2}_{L^{2}(\Omega_{\infty})}+\|\varphi_{2}^{0, h}\|^{2}_{L^{2}(\Omega_{\infty})} \\&&+\|\langle Z\rangle\partial_{Z}\varphi_{2}^{0, 0}\|^{2}_{L^{2}(\Omega_{\infty})} +\|\langle Z^{h}\rangle\partial_{Z^{h}}\varphi_{2}^{0, h}\|^{2}_{L^{2}(\Omega_{\infty})}) +C\varepsilon_{2} (\|b_{2}^{0}\|^{2}_{H^{2}(\Omega)}+\|\partial_{x}^{2}\psi_{2}^{0, 0}\|^{2}_{L^{2}(\Omega_{\infty})}\\&& +\|\partial_{x}^{2}\psi_{2}^{0, h}\|^{2}_{L^{2}(\Omega_{\infty})} +\|\psi_{2}^{0, 0}\|^{2}_{L^{2}(\Omega_{\infty})}+\|\psi_{2}^{0, h}\|^{2}_{L^{2}(\Omega_{\infty})} +\|\langle Z\rangle\partial_{Z}\psi_{2}^{0, 0}\|^{2}_{L^{2}(\Omega_{\infty})} \\&&+\|\langle Z^{h}\rangle\partial_{Z^{h}}\psi_{2}^{0, h}\|^{2}_{L^{2}(\Omega_{\infty})}) +\frac{C(\varepsilon_{1}-\varepsilon^{*})^{2}}{(\varepsilon^{*})^{\frac{3}{2}}\varepsilon_{1}} (\|\partial_{Z}^{2}\varphi_{2}^{0, 0}\|^{2}_{L^{2}(\Omega_{\infty})} +\|\partial_{Z^{h}}^{2}\varphi_{2}^{0, h}\|^{2}_{L^{2}(\Omega_{\infty})}) \\&&+\frac{C(\varepsilon_{2}-\varepsilon^{*})^{2}}{(\varepsilon^{*})^{\frac{3}{2}}\varepsilon_{2}} (\|\partial_{Z}^{2}\psi_{2}^{0, 0}\|^{2}_{L^{2}(\Omega_{\infty})} +\|\partial_{Z^{h}}^{2}\psi_{2}^{0, h}\|^{2}_{L^{2}(\Omega_{\infty})}) \\&&+\frac{C(\varepsilon^{*})^{\frac{3}{2}}}{\varepsilon_{1}}[\|u_{1}^{0}\|^{2}_{H^{2}(0, h)} (\|\langle Z\rangle\partial_{x}\varphi_{2}^{0, 0}\|^{2}_{L^{2}(\Omega_{\infty})}+\|\langle Z^{h}\rangle\partial_{x}\varphi_{2}^{0, h}\|^{2}_{L^{2}(\Omega_{\infty})}) \\&&+\|b_{1}^{0}\|^{2}_{H^{2}(0, h)} (\|\langle Z\rangle\partial_{x}\psi_{2}^{0, 0}\|^{2}_{L^{2}(\Omega_{\infty})}+\|\langle Z^{h}\rangle\partial_{x}\psi_{2}^{0, h}\|^{2}_{L^{2}(\Omega_{\infty})})\\&& +\|u_{2}^{0}\|^{2}_{H^{3+s}(\Omega)} (\|\langle Z\rangle\varphi_{1}^{0, 0}\|^{2}_{L^{2}(0, +\infty)}+\|\langle Z^{h}\rangle\varphi_{1}^{0, h}\|^{2}_{L^{2}(0, +\infty)})\\&& +\|b_{2}^{0}\|^{2}_{H^{3+s}(\Omega)} (\|\langle Z\rangle\psi_{1}^{0, 0}\|^{2}_{L^{2}(0, +\infty)}+\|\langle Z^{h}\rangle\psi_{1}^{0, h}\|^{2}_{L^{2}(0, +\infty)})\\&&+\|\varphi_{1}^{0, 0}\|^{2}_{L^{\infty}(0, +\infty)} \|\langle Z\rangle\partial_{x}\varphi_{2}^{0, 0}\|^{2}_{L^{2}(\Omega_{\infty})} +\|\psi_{1}^{0, 0}\|^{2}_{L^{\infty}(0, +\infty)} \|\langle Z\rangle\partial_{x}\psi_{2}^{0, 0}\|^{2}_{L^{2}(\Omega_{\infty})} \\&&+\|\varphi_{1}^{0, h}\|^{2}_{L^{\infty}(0, +\infty)} \|\langle Z^{h}\rangle\partial_{x}\varphi_{2}^{0, h}\|^{2}_{L^{2}(\Omega_{\infty})} +\|\psi_{1}^{0, h}\|^{2}_{L^{\infty}(0, +\infty)} \|\langle Z^{h}\rangle\partial_{x}\psi_{2}^{0, h}\|^{2}_{L^{2}(\Omega_{\infty})}] \\&&+\frac{C(\varepsilon^{*})^{\frac{3}{2}}}{\varepsilon_{2}}[\|u_{1}^{0}\|^{2}_{H^{2}(0, h)} (\|\langle Z\rangle\partial_{x}\psi_{2}^{0, 0}\|^{2}_{L^{2}(\Omega_{\infty})}+\|\langle Z^{h}\rangle\partial_{x}\psi_{2}^{0, h}\|^{2}_{L^{2}(\Omega_{\infty})}) \\&&+\|b_{1}^{0}\|^{2}_{H^{2}(0, h)} (\|\langle Z\rangle\partial_{x}\varphi_{2}^{0, 0}\|^{2}_{L^{2}(\Omega_{\infty})}+\|\langle Z^{h}\rangle\partial_{x}\varphi_{2}^{0, h}\|^{2}_{L^{2}(\Omega_{\infty})}) \\&&+\|u_{2}^{0}\|^{2}_{H^{3+s}(\Omega)} (\|\langle Z\rangle\psi_{1}^{0, 0}\|^{2}_{L^{2}(0, +\infty)}+\|\langle Z^{h}\rangle\psi_{1}^{0, h}\|^{2}_{L^{2}(0, +\infty)}) \\&&+\|b_{2}^{0}\|^{2}_{H^{3+s}(\Omega)} (\|\langle Z\rangle\varphi_{1}^{0, 0}\|^{2}_{L^{2}(0, +\infty)}+\|\langle Z^{h}\rangle\varphi_{1}^{0, h}\|^{2}_{L^{2}(0, +\infty)})\\&&+\|\varphi_{1}^{0, 0}\|^{2}_{L^{\infty}(0, +\infty)} \|\langle Z\rangle\partial_{x}\psi_{2}^{0, 0}\|^{2}_{L^{2}(\Omega_{\infty})} +\|\psi_{1}^{0, 0}\|^{2}_{L^{\infty}(0, +\infty)} \|\langle Z\rangle\partial_{x}\varphi_{2}^{0, 0}\|^{2}_{L^{2}(\Omega_{\infty})} \\ &&+\|\varphi_{1}^{0, h}\|^{2}_{L^{\infty}(0, +\infty)} \|\langle Z^{h}\rangle\partial_{x}\psi_{2}^{0, h}\|^{2}_{L^{2}(\Omega_{\infty})} +\|\psi_{1}^{0, h}\|^{2}_{L^{\infty}(0, +\infty)} \|\langle Z^{h}\rangle\partial_{x}\varphi_{2}^{0, h}\|^{2}_{L^{2}(\Omega_{\infty})}]. \end{eqnarray}
(4.38)

关于时间积分,可以得到

\begin{eqnarray} && \|\partial_{z}u_{2}^{r}\|_{L^{\infty}(0, T;L^{2}(\Omega))} +\|\partial_{z}b_{2}^{r}\|_{L^{\infty}(0, T;L^{2}(\Omega))} \\&&+\sqrt{\varepsilon_{1}}(\|\partial_{x}\partial_{z}u_{2}^{r}\|_{L^{2}((0, T)\times\Omega)} +\|\partial_{z}^{2}u_{2}^{r}\|_{L^{2}((0, T)\times\Omega)})\\&& +\sqrt{\varepsilon_{2}}(\|\partial_{x}\partial_{z}b_{2}^{r}\|_{L^{2}((0, T)\times\Omega)} +\|\partial_{z}^{2}b_{2}^{r}\|_{L^{2}((0, T)\times\Omega)}) \\ & \leq & C\max\bigg\{\frac{|\varepsilon_{1}-\varepsilon^{*}|} {(\varepsilon^{*})^{\frac{3}{4}}(\varepsilon_{1})^{\frac{1}{2}}}, \frac{|\varepsilon_{2}-\varepsilon^{*}|} {(\varepsilon^{*})^{\frac{3}{4}}(\varepsilon_{2})^{\frac{1}{2}}}, \frac{|\varepsilon_{1}-\varepsilon^{*}|} {(\varepsilon^{*})^{\frac{1}{4}}\varepsilon_{1}}, \frac{|\varepsilon_{2}-\varepsilon^{*}|} {(\varepsilon^{*})^{\frac{1}{4}}\varepsilon_{2}}, \frac{|\varepsilon_{1}-\varepsilon^{*}|} {(\varepsilon^{*})^{\frac{1}{4}}(\varepsilon_{1}\varepsilon_{2})^{\frac{1}{2}}}, \\ &&\frac{|\varepsilon_{2}-\varepsilon^{*}|} {(\varepsilon^{*})^{\frac{1}{4}}(\varepsilon_{1}\varepsilon_{2})^{\frac{1}{2}}}, \frac{(\varepsilon^{*})^{\frac{3}{4}}}{(\varepsilon_{1})^{\frac{1}{2}}}, \frac{(\varepsilon^{*})^{\frac{3}{4}}}{(\varepsilon_{2})^{\frac{1}{2}}}, \frac{\varepsilon_{1}}{(\varepsilon_{2})^{\frac{1}{2}}}, \frac{\varepsilon_{2}}{(\varepsilon_{1})^{\frac{1}{2}}}, (\varepsilon_{1})^{\frac{1}{2}}, (\varepsilon_{2})^{\frac{1}{2}}\bigg\}. \end{eqnarray}
(4.39)

这里用到了(4.10), (4.11)和(4.36)式以及

\|u_{1}\|_{L^{\infty}((0, T)\times(0, h))}\leq \|u_{1}^{r}\|_{L^{\infty}((0, T)\times(0, h))}+\|u_{1}^{app}\|_{L^{\infty}((0, T)\times(0, h))}\leq C,

\|b_{1}\|_{L^{\infty}((0, T)\times(0, h))}\leq \|b_{1}^{r}\|_{L^{\infty}((0, T)\times(0, h))}+\|b_{1}^{app}\|_{L^{\infty}((0, T)\times(0, h))}\leq C.

第4步  对方程组(4.3)作用算子 \partial_{x}, 然后将新得到的方程组的第一个方程两端同乘 -\partial_{x}\partial_{z}^{2}u_{2}^{r} 以及第二个方程两端同乘 -\partial_{x}\partial_{z}^{2}b_{2}^{r} ,在 \Omega 上积分,重复第3步中的过程可得

\begin{eqnarray} && \|\partial_{x}\partial_{z}u_{2}^{r}\|_{L^{\infty}(0, T;L^{2}(\Omega))} +\|\partial_{x}\partial_{z}b_{2}^{r}\|_{L^{\infty}(0, T;L^{2}(\Omega))} \\&&+\sqrt{\varepsilon_{1}}(\|\partial_{x}^{2}\partial_{z}u_{2}^{r}\|_{L^{2}((0, T)\times\Omega)} +\|\partial_{x}\partial_{z}^{2}u_{2}^{r}\|_{L^{2}((0, T)\times\Omega)})\\&& +\sqrt{\varepsilon_{2}}(\|\partial_{x}^{2}\partial_{z}b_{2}^{r}\|_{L^{2}((0, T)\times\Omega)} +\|\partial_{x}\partial_{z}^{2}b_{2}^{r}\|_{L^{2}((0, T)\times\Omega)})\\& \leq &C\max\bigg\{\frac{|\varepsilon_{1}-\varepsilon^{*}|} {(\varepsilon^{*})^{\frac{3}{4}}(\varepsilon_{1})^{\frac{1}{2}}}, \frac{|\varepsilon_{2}-\varepsilon^{*}|} {(\varepsilon^{*})^{\frac{3}{4}}(\varepsilon_{2})^{\frac{1}{2}}}, \frac{|\varepsilon_{1}-\varepsilon^{*}|} {(\varepsilon^{*})^{\frac{1}{4}}\varepsilon_{1}}, \frac{|\varepsilon_{2}-\varepsilon^{*}|} {(\varepsilon^{*})^{\frac{1}{4}}\varepsilon_{2}}, \frac{|\varepsilon_{1}-\varepsilon^{*}|} {(\varepsilon^{*})^{\frac{1}{4}}(\varepsilon_{1}\varepsilon_{2})^{\frac{1}{2}}}, \\ && \frac{|\varepsilon_{2}-\varepsilon^{*}|} {(\varepsilon^{*})^{\frac{1}{4}}(\varepsilon_{1}\varepsilon_{2})^{\frac{1}{2}}}, \frac{(\varepsilon^{*})^{\frac{3}{4}}}{(\varepsilon_{1})^{\frac{1}{2}}}, \frac{(\varepsilon^{*})^{\frac{3}{4}}}{(\varepsilon_{2})^{\frac{1}{2}}}, \frac{\varepsilon_{1}}{(\varepsilon_{2})^{\frac{1}{2}}}, \frac{\varepsilon_{2}}{(\varepsilon_{1})^{\frac{1}{2}}}, (\varepsilon_{1})^{\frac{1}{2}}, (\varepsilon_{2})^{\frac{1}{2}}\bigg\}. \end{eqnarray}
(4.40)

这里用到了(4.37)式.

最后,利用(4.27), (4.36), (4.39)和(4.40)式以及各向异性Sobolev不等式,可以得到

\begin{eqnarray} \|u_{2}^{r}\|_{L^{\infty}((0, T)\times\Omega)} &\leq & C(\|u_{2}^{r}\|^{\frac{1}{2}}_{L^{\infty}(0, T;L^{2}(\Omega))}\|\partial_{x}\partial_{z}u_{2}^{r}\|^{\frac{1}{2}}_{L^{\infty}(0, T;L^{2}(\Omega))} \\ &&+\|\partial_{x}u_{2}^{r}\|^{\frac{1}{2}}_{L^{\infty}(0, T;L^{2}(\Omega))}\|\partial_{z}u_{2}^{r}\|^{\frac{1}{2}}_{L^{\infty}(0, T;L^{2})}) \\ &\leq & C\max\bigg\{\frac{|\varepsilon_{1}-\varepsilon^{*}|^{\frac{1}{2}}}{(\varepsilon^{*})^{\frac{1}{8}}(\varepsilon_{1})^{\frac{1}{4}}}, \frac{|\varepsilon_{2}-\varepsilon^{*}|^{\frac{1}{2}}}{(\varepsilon^{*})^{\frac{1}{8}}(\varepsilon_{2})^{\frac{1}{4}}}, (\varepsilon_{1})^{\frac{1}{2}}, (\varepsilon_{2})^{\frac{1}{2}}, (\varepsilon^{*})^{\frac{3}{8}}\bigg\}\\ &&\max\bigg\{\frac{|\varepsilon_{1}-\varepsilon^{*}|^{\frac{1}{2}}} {(\varepsilon^{*})^{\frac{3}{8}}(\varepsilon_{1})^{\frac{1}{4}}}, \frac{|\varepsilon_{2}-\varepsilon^{*}|^{\frac{1}{2}}} {(\varepsilon^{*})^{\frac{3}{8}}(\varepsilon_{2})^{\frac{1}{4}}}, \frac{|\varepsilon_{1}-\varepsilon^{*}|^{\frac{1}{2}}} {(\varepsilon^{*})^{\frac{1}{8}}(\varepsilon_{1})^{\frac{1}{2}}}, \frac{|\varepsilon_{2}-\varepsilon^{*}|^{\frac{1}{2}}} {(\varepsilon^{*})^{\frac{1}{8}}(\varepsilon_{2})^{\frac{1}{2}}}, \frac{|\varepsilon_{1}-\varepsilon^{*}|^{\frac{1}{2}}} {(\varepsilon^{*})^{\frac{1}{8}}(\varepsilon_{1}\varepsilon_{2})^{\frac{1}{4}}}, \\&&\frac{|\varepsilon_{2}-\varepsilon^{*}|^{\frac{1}{2}}} {(\varepsilon^{*})^{\frac{1}{8}}(\varepsilon_{1}\varepsilon_{2})^{\frac{1}{4}}}, \frac{(\varepsilon^{*})^{\frac{3}{8}}}{(\varepsilon_{1})^{\frac{1}{4}}}, \frac{(\varepsilon^{*})^{\frac{3}{8}}}{(\varepsilon_{2})^{\frac{1}{4}}}, \frac{(\varepsilon_{1})^{\frac{1}{2}}}{(\varepsilon_{2})^{\frac{1}{4}}}, \frac{(\varepsilon_{2})^{\frac{1}{2}}}{(\varepsilon_{1})^{\frac{1}{4}}}, (\varepsilon_{1})^{\frac{1}{4}}, (\varepsilon_{2})^{\frac{1}{4}}\bigg\}.\\\|b_{2}^{r}\|_{L^{\infty}((0, T)\times\Omega)} &\leq & C\max\bigg\{\frac{|\varepsilon_{1}-\varepsilon^{*}|^{\frac{1}{2}}}{(\varepsilon^{*})^{\frac{1}{8}}(\varepsilon_{1})^{\frac{1}{4}}}, \frac{|\varepsilon_{2}-\varepsilon^{*}|^{\frac{1}{2}}}{(\varepsilon^{*})^{\frac{1}{8}}(\varepsilon_{2})^{\frac{1}{4}}}, (\varepsilon_{1})^{\frac{1}{2}}, (\varepsilon_{2})^{\frac{1}{2}}, (\varepsilon^{*})^{\frac{3}{8}}\bigg\}\\ &&\max\bigg\{\frac{|\varepsilon_{1}-\varepsilon^{*}|^{\frac{1}{2}}} {(\varepsilon^{*})^{\frac{3}{8}}(\varepsilon_{1})^{\frac{1}{4}}}, \frac{|\varepsilon_{2}-\varepsilon^{*}|^{\frac{1}{2}}} {(\varepsilon^{*})^{\frac{3}{8}}(\varepsilon_{2})^{\frac{1}{4}}}, \frac{|\varepsilon_{1}-\varepsilon^{*}|^{\frac{1}{2}}} {(\varepsilon^{*})^{\frac{1}{8}}(\varepsilon_{1})^{\frac{1}{2}}}, \frac{|\varepsilon_{2}-\varepsilon^{*}|^{\frac{1}{2}}} {(\varepsilon^{*})^{\frac{1}{8}}(\varepsilon_{2})^{\frac{1}{2}}}, \frac{|\varepsilon_{1}-\varepsilon^{*}|^{\frac{1}{2}}} {(\varepsilon^{*})^{\frac{1}{8}}(\varepsilon_{1}\varepsilon_{2})^{\frac{1}{4}}}, \\&&\frac{|\varepsilon_{2}-\varepsilon^{*}|^{\frac{1}{2}}} {(\varepsilon^{*})^{\frac{1}{8}}(\varepsilon_{1}\varepsilon_{2})^{\frac{1}{4}}}, \frac{(\varepsilon^{*})^{\frac{3}{8}}}{(\varepsilon_{1})^{\frac{1}{4}}}, \frac{(\varepsilon^{*})^{\frac{3}{8}}}{(\varepsilon_{2})^{\frac{1}{4}}}, \frac{(\varepsilon_{1})^{\frac{1}{2}}}{(\varepsilon_{2})^{\frac{1}{4}}}, \frac{(\varepsilon_{2})^{\frac{1}{2}}}{(\varepsilon_{1})^{\frac{1}{4}}}, (\varepsilon_{1})^{\frac{1}{4}}, (\varepsilon_{2})^{\frac{1}{4}}\bigg\}. \end{eqnarray}
(4.41)

这就完成了证明.

5 总结

本文通过寻找带有无渗透狄利克雷边界条件的不可压缩MHD方程组的平面平行管道流解,构造出了方程组的近似解.在粘性系数、磁耗散系数以及边界层的厚度满足一定的关系时,我们得到了误差函数的 L^{2} 收敛和 L^{\infty} 收敛,从而说明了近似解的正确性.

参考文献

Mazzucato A L , Niu D J , Wang X M .

Boundary layer associated with a class of 3D nonlinear plane parallel channel flows

Indiana Univ Math J, 2011, 60: 1113- 1136

DOI:10.1512/iumj.2011.60.4479      [本文引用: 3]

Biskamp D . Nonlinear Magnetohydrodynamics. Cambridge: Cambridge University Press, 1993

[本文引用: 1]

E W N .

Boundary layer theory and the zero viscosity limit of the Navier-Stokes equations

Acta Math Sin (English Series), 2000, 16: 207- 218

DOI:10.1007/s101140000034      [本文引用: 1]

Han D Z , Mazzucato A L , Niu D J , Wang X M .

Boundary layer for a class of nonlinear pipe flow

J Differential Equations, 2012, 252: 6387- 6413

DOI:10.1016/j.jde.2012.02.012      [本文引用: 1]

Duvaut G , Lions J L .

Inéquation en themoélasticite et magnétohydrodynamique

Arch Ration Mech Anal, 1972, 46: 241- 279

DOI:10.1007/BF00250512      [本文引用: 1]

Gie G M, Kelliher J P, Lopes Filho M C, et al. The vanishing viscosity limit for some symmetric flows. 2017, arXiv: 1706.06039

[本文引用: 1]

He C , Xin Z P .

On the regularity of weak solutions to the magnetohydrodynamic equations

J Differential Equations, 2005, 213: 235- 254

DOI:10.1016/j.jde.2004.07.002      [本文引用: 1]

He C , Xin Z P .

Partial regularity of suitable weak solutions to the incompressible magnetohydrodynamic equations

J Funct Anal, 2005, 227: 113- 152

DOI:10.1016/j.jfa.2005.06.009      [本文引用: 1]

Masmoudi N .

The Euler limit of the Navier-Stokes equations, and rotating fluids with boundary

Arch Ration Mech Anal, 1998, 142: 375- 394

DOI:10.1007/s002050050097      [本文引用: 1]

Liu C J, Xie F, Yang T. MHD boundary layers in Sobolev spaces without monotonicity Ⅱ: convergence theory. 2017, arXiv: 1704.00523[math.AP]

[本文引用: 1]

Masmoudi N .

Remarks about the inviscid limit of the Navier-Stokes system

Comm Math Phys, 2007, 270 (3): 777- 788

DOI:10.1007/s00220-006-0171-5      [本文引用: 1]

Sammartino M , Caflisch R E .

Zero viscosity limit for analytic solutions of the Navier-Stokes equations on a half space I:Existence for Euler and Prandtl equations

Comm Math Phys, 1998, 192: 433- 461

DOI:10.1007/s002200050304     

Sammartino M , Caflisch R E .

Zero viscosity limit for analytic solutions of the Navier-Stokes equations on a half space Ⅱ:Construction of Navier-Stokes solution

Comm Math Phys, 1998, 192: 463- 491

DOI:10.1007/s002200050305      [本文引用: 1]

Sermange M , Temam R .

Some mathematical questions related to the MHD equations

Comm Pure Appl Math, 1983, 36: 635- 664

DOI:10.1002/cpa.3160360506      [本文引用: 1]

Temam R , Wang X M .

Asymptotic analysis of Oseen type equations in a channel at small viscosity

Indiana Univ Math J, 1996, 45: 863- 916

URL     [本文引用: 1]

Temam R , Wang X M .

Remarks on the Prandtl equation for a permeable wall

Z Angew Math Mech, 2000, 80: 835- 843

DOI:10.1002/1521-4001(200011)80:11/12<835::AID-ZAMM835>3.0.CO;2-9      [本文引用: 1]

Temam R , Wang X M .

Boundary layer associated with incompressible Navier-Stokes equations:The noncharacteristic boundary case

J Differential Equations, 2002, 179: 647- 686

DOI:10.1006/jdeq.2001.4038      [本文引用: 2]

Wu J H .

Regularity criteria for the generalized MHD equations

Comm Partial Differential Equations, 2008, 33: 285- 306

DOI:10.1080/03605300701382530      [本文引用: 1]

Wang S , Wang B Y , Liu C D , Wang N .

Boundary layer problem and zero viscosity-diffusion vanishing limit of the incompressible Magnetohydrodynamic system with no-slip boundary conditions

J Differential Equations, 2017, 263: 4723- 4749

DOI:10.1016/j.jde.2017.05.025      [本文引用: 2]

王术, 王娜.

不可压缩MHD方程组的边界层问题

北京工业大学学报, 2017, 43 (10): 1596- 1603

URL     [本文引用: 1]

Wang S , Wang N .

The boundary layer problem for the incompressible MHD equations

J Beijing Univ Technol, 2017, 43 (10): 1596- 1603

URL     [本文引用: 1]

Wang S , Wang N .

Boundary layer problem of MHD system with noncharacteristic perfect conducting wall

Applicable Analysis, 2019, 98 (3): 516- 535

DOI:10.1080/00036811.2017.1395867      [本文引用: 2]

Wang N , Wang S .

Vanishing vertical limit of the incompressible combined viscosity and magnetic diffusion magnetohydrodynamic system

Math Meth Appl Sci, 2018, 41: 5015- 5049

DOI:10.1002/mma.4950      [本文引用: 1]

Nguyen T T , Sueur F .

Boundary-layer interactions in the plane-parallel incompressible flows

Nonlinearity, 2012, 25 (12): 3327- 3342

DOI:10.1088/0951-7715/25/12/3327      [本文引用: 2]

Wang X M .

A kato type theorem on zero viscosity limit of Navier-Stokes flows

Indiana Univ Math J, 2001, 50: 223- 241

DOI:10.1512/iumj.2001.50.2098      [本文引用: 1]

谢晓强, 罗琳, 李常敏.

非特征边界的MHD方程的边界层

数学年刊, 2014, 35A (2): 171- 192

URL    

Xie X Q , Luo L , Li C M .

Boundary layer for MHD equations with the noncharacteristic boundary conditions

Chin Ann Math, 2014, 35A (2): 171- 192

URL    

/