[1] |
Mazzucato A L, Niu D J, Wang X M. Boundary layer associated with a class of 3D nonlinear plane parallel channel flows. Indiana Univ Math J, 2011, 60:1113-1136<br />
|
[2] |
Biskamp D. Nonlinear Magnetohydrodynamics. Cambridge:Cambridge University Press, 1993<br />
|
[3] |
E W N. Boundary layer theory and the zero viscosity limit of the Navier-Stokes equations. Acta Math Sin (English Series), 2000, 16:207-218<br />
|
[4] |
Han D Z, Mazzucato A L, Niu D J, Wang X M. Boundary layer for a class of nonlinear pipe flow. J Differential Equations, 2012, 252:6387-6413<br />
|
[5] |
Duvaut G, Lions J L. Inéquation en themoélasticite et magnétohydrodynamique. Arch Ration Mech Anal, 1972, 46:241-279<br />
|
[6] |
Gie G M, Kelliher J P, Lopes Filho M C, et al. The vanishing viscosity limit for some symmetric flows. 2017, arXiv:1706.06039<br />
|
[7] |
He C, Xin Z P. On the regularity of weak solutions to the magnetohydrodynamic equations. J Differential Equations, 2005, 213:235-254<br />
|
[8] |
He C, Xin Z P. Partial regularity of suitable weak solutions to the incompressible magnetohydrodynamic equations. J Funct Anal, 2005, 227:113-152<br />
|
[9] |
Masmoudi N. The Euler limit of the Navier-Stokes equations, and rotating fluids with boundary. Arch Ration Mech Anal, 1998, 142:375-394<br />
|
[10] |
Liu C J, Xie F, Yang T. MHD boundary layers in Sobolev spaces without monotonicity Ⅱ:convergence theory. 2017, arXiv:1704.00523[math.AP]<br />
|
[11] |
Masmoudi N. Remarks about the inviscid limit of the Navier-Stokes system. Comm Math Phys, 2007, 270(3):777-788<br />
|
[12] |
Sammartino M, Caflisch R E. Zero viscosity limit for analytic solutions of the Navier-Stokes equations on a half space I:Existence for Euler and Prandtl equations. Comm Math Phys, 1998, 192:433-461<br />
|
[13] |
Sammartino M, Caflisch R E. Zero viscosity limit for analytic solutions of the Navier-Stokes equations on a half space Ⅱ:Construction of Navier-Stokes solution. Comm Math Phys, 1998, 192:463-491<br />
|
[14] |
Sermange M, Temam R. Some mathematical questions related to the MHD equations. Comm Pure Appl Math, 1983, 36:635-664<br />
|
[15] |
Temam R, Wang X M. Asymptotic analysis of Oseen type equations in a channel at small viscosity. Indiana Univ Math J, 1996, 45:863-916<br />
|
[16] |
Temam R, Wang X M. Remarks on the Prandtl equation for a permeable wall. Z Angew Math Mech, 2000, 80:835-843<br />
|
[17] |
Temam R, Wang X M. Boundary layer associated with incompressible Navier-Stokes equations:The noncharacteristic boundary case. J Differential Equations, 2002, 179:647-686<br />
|
[18] |
Wu J H. Regularity criteria for the generalized MHD equations. Comm Partial Differential Equations, 2008, 33:285-306<br />
|
[19] |
Wang S, Wang B Y, Liu C D, Wang N. Boundary layer problem and zero viscosity-diffusion vanishing limit of the incompressible Magnetohydrodynamic system with no-slip boundary conditions. J Differential Equations, 2017, 263:4723-4749<br />
|
[20] |
王术, 王娜. 不可压缩MHD方程组的边界层问题. 北京工业大学学报, 2017, 43(10):1596-1603 Wang S, Wang N. The boundary layer problem for the incompressible MHD equations. J Beijing Univ Technol, 2017, 43(10):1596-1603<br />
|
[21] |
Wang S, Wang N. Boundary layer problem of MHD system with noncharacteristic perfect conducting wall. Applicable Analysis, 2019, 98(3):516-535<br />
|
[22] |
Wang N, Wang S. Vanishing vertical limit of the incompressible combined viscosity and magnetic diffusion magnetohydrodynamic system. Math Meth Appl Sci, 2018, 41:5015-5049<br />
|
[23] |
Nguyen T T, Sueur F. Boundary-layer interactions in the plane-parallel incompressible flows. Nonlinearity, 2012, 25(12):3327-3342<br />
|
[24] |
Wang X M. A kato type theorem on zero viscosity limit of Navier-Stokes flows. Indiana Univ Math J, 2001, 50:223-241<br />
|
[25] |
谢晓强, 罗琳, 李常敏. 非特征边界的MHD方程的边界层, 数学年刊,2014, 35A(2):171-192 Xie X Q, Luo L, Li C M. Boundary layer for MHD equations with the noncharacteristic boundary conditions. Chin Ann Math, 2014, 35A(2):171-192
|