(h)性质及其扰动
Property (h) and Perturbations
通讯作者:
收稿日期: 2018-02-9
基金资助: |
|
Received: 2018-02-9
Fund supported: |
|
该文引入并研究了Banach空间中的有界线性算子的(h)性质,它是a-Weyl定理的推广.进而得到了(h)性质在有限秩和幂零扰动下的稳定性.单值扩张性是局部谱理论中的重要部分,该文还证明了(h)性质与单值扩张性之间的关系,从而得到了满足(h)性质的几类算子.
关键词:
In this paper, we introduce and study the property (h), which extends a-Weyl's theorem. We consider its stability under commuting finite rank and nilpotent perturbations. We prove that property (h) on Banach spaces is related to an important property which has a leading role in local spectral theory:the single-valued extension property. From this result we deduce that property (h) holds for several classes of operators.
Keywords:
本文引用格式
乌日柴胡, 阿拉坦仓.
Wurichaihu , Alatancang .
1 引言
2 预备知识
本文中,
上半-Weyl算子定义为
由文献[9],若
定义2.2
由定义容易得到
引理2.1
其中
3 主要结论
引理2.1的逆命题一般不成立,如下例.
例3.1 设
故
即
定理3.1 设
证 若
因为
因此
反之,假设
下面只要证明
若
由文献[12,引理3.1]可知
反之,假设
注3.1 若
推论3.1 设
证 由定理3.1和注3.1容易得到.
一般情况下, (
例3.2 定义Banach空间
其中
由文献[12]知
故
即
定义
和Banach空间
则
由文献[13]知
且
故
即
定理3.2 设
因此
下面的例子说明定理3.2中的可交换性不能去掉.
例3.3 设
显然
且
因此
且
且
因而
故
一般,定理3.2不能推广到交换的拟幂零扰动.
例3.4 在Hilbert空间
则
且
进而,有
因此
所以
故
定理3.3 设
(1)如果
(2)如果
证 (1)如果
因此
故
(2)与(1)类似地可以证明.
定理3.4 若
推论3.2 设
由定理3.3和文献[5]的引理3.3,定理3.4可以得到满足
(a)每个log-hyponormal算子具有
(c)每个
(d)如果
(e)交换的半单Banach代数上的乘子具有
Banach空间上的transaloid算子具有
定理3.5 假设
(ⅰ)
(ⅱ)
参考文献
Weyl type theorems for bounded linear operators
,
Another note on Weyl's theorem
,DOI:10.1090/S0002-9947-97-01881-3
Classes of operators satisfying a-Weyl's theorem
,DOI:10.4064/sm169-2-1 [本文引用: 7]
Perturbation results for Weyl type theorems
,
无穷维Hamilton算子的本质谱
,DOI:10.3969/j.issn.1003-3998.2018.03.006 [本文引用: 1]
The essential spectra of infinite dimensional Hamilton operator
DOI:10.3969/j.issn.1003-3998.2018.03.006 [本文引用: 1]
Weyl's theorem for nonnormal operators
,DOI:10.1307/mmj/1031732778 [本文引用: 1]
Spectral theory Ⅰ. Resolution of the identity
,DOI:10.2140/pjm.1952.2.559 [本文引用: 1]
Generalized a-Weyl's theorem and perturbations
,
On the axiomatic theory of spectrum Ⅱ
,DOI:10.4064/sm-119-2-129-147 [本文引用: 1]
Spectra originated from semi-B-Fredholm theory and commuting perturbations
,DOI:10.4064/sm219-1-1 [本文引用: 1]
Weyl's and Browder's theorem for operators satisfying the SVEP
,DOI:10.4064/sm163-1-5 [本文引用: 1]
Weyl's theorem for some classes of operators
,DOI:10.1007/s00020-003-1331-z [本文引用: 1]
p-hyponormal operators are subscalar
,DOI:10.1090/S0002-9939-03-07011-4 [本文引用: 2]
Weyl's theorems holds for p-hyponormal operators
,DOI:10.1017/S0017089500032092 [本文引用: 1]
Operators which have a closed quasinilpotent part
,DOI:10.1090/S0002-9939-02-06386-4 [本文引用: 1]
Weyl's theorem, a-Weyl's theorem and local spectral theory
,DOI:10.1112/S0024610702004027 [本文引用: 1]
Quasi-similarity of tuples with Bishop's property (β)
,DOI:10.1007/BF01203128 [本文引用: 1]
/
〈 | 〉 |