1 |
Berkani M , Koliha J J . Weyl type theorems for bounded linear operators. Acta Sci Math (Szeged), 2003, 69: 359- 376
|
2 |
Harte R , Lee W Y . Another note on Weyl's theorem. Trans Amer Math Soc, 1997, 349: 2115- 2124
doi: 10.1090/S0002-9947-97-01881-3
|
3 |
Rakočević V . On a class of operators. Math Vesnik, 1985, 37: 423- 426
|
4 |
Rakočević V . Operators obeying a-Weyl's theorem. Rev Roumaine Math Pures Appl, 1989, 34: 915- 919
|
5 |
Aiena P . Classes of operators satisfying a-Weyl's theorem. Studia Math, 2005, 169: 105- 122
doi: 10.4064/sm169-2-1
|
6 |
Berkani M , Zariouh H . Perturbation results for Weyl type theorems. Acta Math Univ Comenianae, 2011, 80: 119- 132
|
7 |
Aiena P . Fredholm and Local Spectral Theory with Applications to Multipliers. Dordrecht: Kluwer Acad Publishers, 2004
|
8 |
李玉丹, 吴德玉, 阿拉坦仓. 无穷维Hamilton算子的本质谱. 数学物理学报, 2018, 38A: 476- 483
doi: 10.3969/j.issn.1003-3998.2018.03.006
|
|
Li Y D , Wu D Y , Alatancang . The essential spectra of infinite dimensional Hamilton operator. Acta Math Sci, 2018, 38A: 476- 483
doi: 10.3969/j.issn.1003-3998.2018.03.006
|
9 |
Coburn L A . Weyl's theorem for nonnormal operators. Michigan Math J, 1966, 13: 285- 288
doi: 10.1307/mmj/1031732778
|
10 |
Dunford N . Spectral theory Ⅰ. Resolution of the identity. Pacific J Math, 1952, 2: 559- 614
doi: 10.2140/pjm.1952.2.559
|
11 |
Laursen K B , Neumann M M . Introduction to Local Spectral Theory. Oxford: Clarendon Press, 2000
|
12 |
Djordjević D S . Operators obeying a-Weyl's theorem. Publ Math Debrecen, 1999, 55: 283- 298
|
13 |
Berkani M , Zariouh H . Generalized a-Weyl's theorem and perturbations. Journal Functional Analysis, Approximation and Computation, 2010, 2: 7- 18
|
14 |
Mbekhta M , Müller V . On the axiomatic theory of spectrum Ⅱ. Studia Math, 1996, 119: 129- 147
doi: 10.4064/sm-119-2-129-147
|
15 |
Zeng Qingping , Jiang Qiaofen , Zhong Huaijie . Spectra originated from semi-B-Fredholm theory and commuting perturbations. Studia Math, 2013, 219: 1- 18
doi: 10.4064/sm219-1-1
|
16 |
Oudghiri M . Weyl's and Browder's theorem for operators satisfying the SVEP. Studia Math, 2004, 163: 85- 101
doi: 10.4064/sm163-1-5
|
17 |
Aiena P , Villafañe F . Weyl's theorem for some classes of operators. Integral Equations Operator Theory, 2005, 53: 453- 466
doi: 10.1007/s00020-003-1331-z
|
18 |
Lin C , Ruan Y , Yan Z . p-hyponormal operators are subscalar. Proc Amer Math Soc, 2003, 131: 2753- 2759
doi: 10.1090/S0002-9939-03-07011-4
|
19 |
Chō M , Itoh M , Ōshiro S . Weyl's theorems holds for p-hyponormal operators. Glasgow Math J, 1997, 39: 217- 220
doi: 10.1017/S0017089500032092
|
20 |
Han Y M , Kim A H . A note on *-paranormal operators. Integral Equations Operator Theory, 2004, 49: 435- 444
|
21 |
Aiena P , Colasante M L , Gonzalez M . Operators which have a closed quasinilpotent part. Proc Amer Math Soc, 2002, 130: 2701- 2710
doi: 10.1090/S0002-9939-02-06386-4
|
22 |
Curto R E , Han Y M . Weyl's theorem, a-Weyl's theorem and local spectral theory. J London Math Soc, 2003, 67: 499- 509
doi: 10.1112/S0024610702004027
|
23 |
Putinar M . Quasi-similarity of tuples with Bishop's property (β). Integral Equations Operator Theory, 1992, 15: 1047- 1052
doi: 10.1007/BF01203128
|
24 |
Djordjević S V , Jeon I H , Ko E . Weyl's theorem through local spectral theory. Glasgow Math J, 2002, 44: 323- 327
|