Processing math: 0%

数学物理学报, 2019, 39(3): 570-581 doi:

论文

分数布朗运动驱动的带脉冲的中立性随机泛函微分方程的渐近稳定性

崔静,, 梁秋菊, 毕娜娜

Asymptotic Stability of Impulsive Neutral Stochastic Functional Differential Equation Driven by Fractional Brownian Motion

Cui Jing,, Liang Qiuju, Bi Nana

通讯作者: 崔静,E-mail: jcui123@126.com

收稿日期: 2017-02-24  

基金资助: 国家自然科学基金.  11401010
国家自然科学基金.  11571071
安徽省自然科学基金.  1708085MA03
安徽省杰出青年学者基金.  1608085J06

Received: 2017-02-24  

Fund supported: the NSFC.  11401010
the NSFC.  11571071
the Natural Science Foundation of Anhui Province.  1708085MA03
the Distinguished Young Scholars Foundation of Anhui Province.  1608085J06

摘要

该文在实可分的Hilbert空间中,用不动点方法研究了由分数布朗运动驱动的脉冲中立型随机泛函微分方程温和解的P阶矩的渐近稳定性并举例说明所得结论的可行性.

关键词: 渐近稳定性 ; 随机发展方程 ; 分数布朗运动

Abstract

In this paper, we consider the asymptotic stability in the p-th moment of mild solutions of impulsive neutral stochastic functional differential equations driven by fractional Brownian motion in a real separable Hilbert space. A fixed point approach is used to achieve the required result. A practical example is provided to illustrate the viability of the abstract result of this work.

Keywords: Asymptotic stability ; Stochastic evolution equations ; Fractional Brownian motion

PDF (388KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

崔静, 梁秋菊, 毕娜娜. 分数布朗运动驱动的带脉冲的中立性随机泛函微分方程的渐近稳定性. 数学物理学报[J], 2019, 39(3): 570-581 doi:

Cui Jing, Liang Qiuju, Bi Nana. Asymptotic Stability of Impulsive Neutral Stochastic Functional Differential Equation Driven by Fractional Brownian Motion. Acta Mathematica Scientia[J], 2019, 39(3): 570-581 doi:

1 引言

H表示一个实可分的Hilbert空间,其上的内积及范数分别为(,),考虑{\cal H}中由分数布朗运动驱动的一类脉冲中立性随机发展方程

\begin{equation}\label{sec1-eq1}\left\{\begin{array}{ll}d[x(t)-g(t, x(t-\tau(t)))]=[A(t)x(t)+f(t, x(t-\rho (t)))]{\rm d}t+ \sigma(t){\rm d}B^{H}(t), \\\;\;\;\;\;\;\;\;\; t \geq 0, t\neq t_{k}, \\ \Delta x|_{t=t_{k}}=x(t_{k}^{+})-x(t_{k}^{-})=I_{k}(x(t_{k})), ~~~~~t= t_{k}, ~~~ k=1, 2, \cdots , \\ x_{0}(\cdot)=\phi \in D_{{\cal F}_{0}}( (-r, 0], {\cal H} ), ~~~~r> 0 \end{array} \right. \end{equation}
(1.1)

温和解的存在性和渐近稳定性,其中\{A(t), t\geq 0\}{\cal H}上的稠定闭线性算子族, \{U(t, s), 0 \leq s \leq t \}A(t)生成的发展算子. B^{H} , H > \frac{1}{2},是取值于实可分Hilbert空间 {\cal K}上的分数布朗运动.映射f, g:\mathbb{R}_{+}\times {\cal H} \longrightarrow {\cal H}\sigma:\mathbb{R}_{+}\longrightarrow {\cal L}_{Q}^{0}({\cal K}, {\cal H})是满足一定条件的函数(见第2部分),其中{\cal L}_{Q}^{0}({\cal K}, {\cal H})表示所有从{\cal K}{\cal H}的Q-Hilbert-Schmidt算子. \tau , \rho :[0, +\infty)\longrightarrow [0, r] 为连续函数.此外, x(t_{k}^{-}) x(t_{k}^{+})分别表示x(t)t_{k}时刻的左右极限. \Delta x(t_{k})表示状态 x 在时刻t_{k}的跃度,固定时刻t_{k}, k=1, 2, \cdots , 满足0 < t_{1} <\cdots< t_{k} \cdots <\cdots , \mathop {\lim }\limits_{k \to \infty } {t_k} = \infty.D_{{\cal F}_{0}} :=D_{{\cal F}_{0}}( [-r, 0], {\cal H})=\big\{\phi: [-r, 0]\rightarrow {\cal H}, \phi\in{\cal F}_{0}是几乎必然有界的,除了有限个点外\phi是处处连续的,且在任一跳跃点s处, \phi(s-)\phi(s+)存在且\phi(s-)=\phi(s),其范数为{\left\| \phi \right\|_{{D_{{{\cal F}_0}}}}} = \mathop {\sup }\limits_{t \in ( - r,0]} |\phi (t){|_{{\cal H}}}\}.

随机发展方程在各个科学领域,如物理、机械工程、化学、经济,都有着广泛地应用,很多学者对可分Hilbert空间上的随机发展方程及泛函型随机发展方程理论进行了研究,许多丰硕成果如存在性、渐近稳定性及解的其它定量和定性性质可参考文献[7, 9-10, 14, 17, 20-21, 24-25]及相关文献.

Hurst指数为H\in(0, 1)的分数布朗运动B^H=\{B^H(t), 0\leq t\leq T\}是一族具有连续样本轨道的中心高斯过程,且对所有的t, s\geq 0B_0=0

E(B_t^HB_s^H)=\frac{1}{2}[t^{2H}+s^{2H}-|t-s|^{2H}] ,

它是一个具有平稳增量的自相似过程,当\frac{1}{2}<H<1具有长记忆;当H=\frac{1}{2}B^H是标准布朗运动.由于这些紧的性质使分数布朗运动成为许多物理模型的候选噪声.因此对于分数布朗运动及其相关问题的研究有十分重要的意义.

最近,分数布朗运动驱动的随机发展方程的研究引起许多学者的广泛关注.比如, Boufoussi和Hajji[2-3]研究了分数布朗运动驱动的中立型随机发展方程和带有时间延迟的随机发展方程,文献[6]通过不动点理论研究了分数布朗运动驱动的随机泛函偏微分方程的指数稳定性. Caraballo等[15]证明了带有分数噪声项的随机延迟发展方程温和解的存在性和指数稳定性, Duncan等[18]讨论了带有可乘分数噪声项的随机微分方程的弱解、强解和温和解的存在性,文献[22]中作者研究了分数布朗运动驱动的时变随机发展方程, Ren等[26]在Hilbert空间上研究了一类由分数布朗运动驱动的具有无限延迟的脉冲中立型随机泛函微分方程, Duc等[19]研究了由分数布朗运动驱动的随机发展方程的指数稳定性.

此外,在生物科学、经济学、医学等研究领域,许多用来拟合的过程其演化会存在短暂的突变现象,这种突变在随机微分系统中常用脉冲来刻画,已有的一些结果可参见文献[8, 13, 23]及相关文献.因此,对分数布朗运动驱动的脉冲随机发展方程的研究就显得十分有意义.据了解,分数布朗运动驱动的脉冲中立型随机发展方程渐近稳定的结果并不多见.基于此,本文考虑脉冲中立型随机发展方程(1.1)的渐近稳定性,利用算子理论,随机分析技巧和不动点定理给出了系统(1.1)温和解的P阶矩渐近稳定的充分条件.

文章结构如下:第二部分介绍分数布朗运动及其维纳积分,给出一些记号和所需的基础结论;第三部分着重讨论了系统(1.1)的渐近稳定性;最后给出一个例子所得结果的有效性.

2 预备知识

本节回顾了在可分Hilbert空间中分数布朗运动的定义及其相应的随机积分.更多内容可参考文献[4-5]及其相关文献.

2.1 分数布朗运动

(\Omega, {\cal F}, \{{\cal F}_{t}\}_{t\geq 0}, P)是一个带流的完备概率空间.对任意T>0,令\{\beta^H(t), t\in[0, T]\}表示一维的分数布朗运动,其Hurst指数H\in(1/2, 1).众所周知, \beta^H是一个连续的中心高斯过程,协方差函数为

R_H(t, s)=\frac{1}{2}\left(t^{2H}+s^{2H}-|t-s|^{2H}\right).

此外, \beta^H有以下维纳积分表示

\beta^H(t)=\int_0^tK_H(t, s)\, {\rm d}\beta(s),

其中\beta=\{\beta(t):t\in[0, T]\}是个维纳过程, K_H(t, s)是核且具有形式

K_H(t, s)=c_Hs^{\frac{1}{2}-H}\int_s^t(u-s)^{H-3/2}u^{H-1/2}\, {\rm d}u, \hskip0.5cmt>s,

c_H=\sqrt{\frac{H(2H-1)}{B(2-2H, H-\frac{1}{2})}}, B(\cdot)表示Beta函数.当t\leq s时, K_H(t, s)=0.显然

\frac{\partial K_H}{\partial t}(t, s)=c_H(\frac{s}{t})^{\frac{1}{2}-H}(t-s)^{H-3/2}.

{\cal E}表示由示性函数 \chi_{_{[0, t]}}, t \in [0, T]生成的线性空间,其上的内积

\langle\chi_{[0, t]}, \chi_{[0, s ]}\rangle_{{\cal X}}=R_H(t, s),

{\cal X}{\cal E}的完备化空间. \varphi\in {\cal E} \rightarrow \beta^H(\varphi){\cal E}和由\beta^H生成的高斯空间之间的等距映射,且可以延拓到{{\cal X}}.考虑线性算子K_H^*:{\cal E} \rightarrow L^2([0, T]),

(K_H^*\varphi)(s)=\int_{s}^{T}\varphi(t)\frac{\partial K_H}{\partial t}(t, s){\rm d}t.

易知K_H^*{\cal E}L^2([0, T])之间的等距映射且能延拓到{{\cal X}}.对任意\varphi\in {{\cal X}},

\int_{0}^{T}(\varphi)(s){\rm d}\beta^H(s)= \int_{0}^{T} ( K_H^*\varphi)(s){\rm d}B(s),

当且仅当 K_H^*\varphi \in L^2([0, T]).

L^{2}_{{\cal X}}([0, T])=\{\varphi\in {\cal X}, K_H^*\varphi \in L^2([0, T])\},

由于 H> 1/2 ,故

L^{\frac{1}{H}}([0, T])\subseteq L^{2}_{{\cal X}}([0, T]).

此外,如下结论成立:

引理 2.1[5]  对任意的 \psi \in L^{\frac{1}{H}}([0, T]) ,有

H(2H-1)\int_{0}^{T} \int_{0}^{T} | \psi(s) | |\psi(t)||s-t|^{2H-2}{\rm d}s{\rm d}t \leq c_{H}\|\psi \|^{2}_{L^{\frac{1}{H}}([0, T]) }.

下面介绍Hilbert空间中{\cal K} -值的分数布朗运动及其随机积分的定义.令\{B^H(t), 0\leq t \leq T\}是一定义在(\Omega, {\cal F}, \{{\cal F}_{t}\}_{t\geq 0}, P){\cal K} -值, {\cal F}_{t} -适应的分数布朗运动,且具有如下表示形式

B^H(t)= \sum\limits_{n=1}^\infty \sqrt{\lambda_n }\beta_n^H(t)e_n, \hskip0.5cmt\geq 0 ,

其中\{ e_n, n \in N\} {\cal K}中的一个标准正交基. \{\beta_n^H(t), t\geq 0, n=1, 2, \cdots\}是具有相同Hurst参数H > 1/2 的独立分数布朗运动序列, \{ \lambda_n , n\in N \} 是非负实值有界序列,满足Qe_n=\lambda_n e_n. Q是一非负自伴随算子且具有有限迹Tr Q=\sum\limits_{n=1}^\infty \sqrt{\lambda_n } < +\infty.称随机过程B^H(\cdot){\cal K} -值Q -柱分数布朗运动.

\varphi:[0, T]\rightarrow L_Q^0({\cal K}, {\cal H})满足

\begin{equation}\label{product} \sum\limits_{n=1}^\infty\|K_H^*(\varphiQ^{\frac{1}{2}}e_n)\|_{_{L^2([0, T];H)}}<\infty, \end{equation}
(2.1)

其中 L_Q^0({\cal K}, {\cal H}) 是从 Q^{1/2}{\cal K} {\cal H}的所有Hilbert-Schmidt算子空间,其上的范数\| \cdot\|_{L_Q^0({\cal K}, {\cal H})},

\| \Phi\|^{2}_{L_Q^0({\cal K}, {\cal H})}= \sum\limits_{n=1}^\infty \|\sqrt{\lambda_n } \Phi e_n\|^{2} .

定义2.1[2]  令\varphi:[0, T]\rightarrow L_Q^0({\cal K}, {\cal H})满足(2.1),则其随机积分\int_0^t \varphi (s){\rm d}B^{H}(s)定义为

\begin{equation}\int_0^t\varphi(s){\rm d}B^H(s):= \sum\limits_{n=1}^\infty\int_0^t\varphi(s)Q^{\frac{1}{2}}e_n{\rm d}\beta_n^H(s)=\sum\limits_{n=1}^\infty\int_0^t(K_H^*(\varphi Q^{\frac{1}{2}}e_n))(s){\rm d}\beta(s).\end{equation}
(2.2)

2.2 发展算子族

本节介绍发展算子族的有关知识,更多内容可参见文献[11-12].

引理2.2  令\left\{A(t), t \in [0, T]\right\}是在Hilbert空间X上的闭稠定线性无界算子,其定义域D\left(A(t)\right ) t 独立,且存在常数\lambda _{0} \geq 0 , \theta \in \left (\frac{\pi}{2}, \pi \right) , L, K\geq 0 ,和\mu, \nu \in \left(0, 1\right] , \mu + \nu > 1 满足对 t, s \in \mathbb{R} , \lambda \in \sum _{\theta},

\sum _{\theta} \cup \{ 0\} \subset \rho \left( A(t)- \lambda _{0} \right ), \hskip0.5cms \| R\left(\lambda, A(t)- \lambda _{0} \right ) \| \leq \frac{K}{1+|\lambda|}

\|\left( A(t)- \lambda _{0} \right)R(\lambda, A(t)- \lambda _{0} )[R\left(\lambda, A(t) \right)-R\left(\lambda, A(s) \right) ]\| \leq L|t-s|^{\mu} |\lambda|^{-\nu}

成立,其中 \sum _{\theta} :=\left\{ \lambda \in {\Bbb C} - {0}:|{\rm arg} \lambda |\leq \theta \right\}.则存在唯一一个发展族\{U(t, s):0\leq s \leq t \leq T\}使得

ⅰ) U(t, s)U(s, r)=U(t, r), U(s, s)=I, r \leq s \leq t ;

ⅱ) (t, s) \longrightarrow U(t, s)x 是强连续的, t > s ;

ⅲ) \partial_{t}U(t, s)=A(t)U(t, s)\| A(t)^{k} U(t, s) \| \leq C(t-s)^{-k},对0< t-s \leq 1, k=0, 1.

注2.1  如果\{A(t), t \in [0, T]\}是一个二阶微分算子,即对任意 t \in [0, T] A(t)=A ,那么A生成一C_{0} -半群\{e^{At} , t \in [0, T] \}.

3 主要结果

本节将得到系统(1.1)的渐近稳定性的主要结果.以下除非另有说明,否则假设H\in(\frac{1}{2}, 1).C表示一个有限正常数,它在不同位置取值可能不相同.首先介绍了系统(1.1)的温和解的概念和温和解的P阶矩渐近稳定的定义.

定义3.1  若一个 {\cal H} -值的过程\{x(t), t \geq 0 \} 满足:

(1) x(t){\cal F}_{t}适应且\int_{0}^{T}|x(t) |_{{\cal H}} ^{p} {\rm d}t < \infty 几乎必然成立;

(2) x(t)[0, \infty)有càdlàg路径且对任意t \in [0, \infty) ,有

\begin{eqnarray*} x(t)&=&U(t, 0)(\varphi(0)-g(0, \varphi(-\tau(0))))+g(t, x(t-\tau(t)))\\ &&+ \int_{0}^{t}AU(t, s)g(s, x(s-\tau(s))){\rm d}s+\int_{0}^{t}U(t, s)f(s, x(s-\rho(s))){\rm d}s\\ &&+\int_{0}^{t}U(t, s)\sigma(s){\rm d}B^{H}_{s}+\sum\limits_{0 < t_{k} < t}U(t, t_{k})I_{k}(x(t_{k})), \end{eqnarray*}

初始条件x_0(\cdot)=\varphi\in D_{{\cal F}_{0}},则称\{x(t), t \geq 0 \} 为系统(1.1)的温和解.

定义3.2[16]  设p\geq 2是一整数.若对任意给定的\epsilon > 0t\geq 0,存在\delta> 0使得

{\Bbb E}\left( |x(t) |_{{\cal H}}^{p} \right)<\epsilon ,

\|\varphi\| <\delta ,其中 {\Bbb E}表示概率测度 {\Bbb P}的期望,则称初值为\varphi \in D_{{\cal F}_{0}}的温和解x(t)P阶矩稳定的.

定义 3.3[16]  设p\geq 2是一整数.若初值为\varphi \in D_{{\cal F}_{0}}的温和解\{x(t), t \geq 0 \} P阶矩稳定的且对任意\varphi \in D_{{\cal F}_{0}},

\lim\limits_{t \rightarrow \infty} {\Bbb E}\left( |x(t) |_{{\cal H}}^{p}\right )=0,

则称\{x(t), t \geq 0 \} 是渐近稳定的.

为了得到主要结果,我们引入以下假设:

(H1)存在正常数M\geq1, \beta M_{*}使得

\| U(t, s)\|\leq Me^{-\beta(t-s)}, \;\mbox{对}\; t\geq s ,

\| A^{-1}(t)\|\leq M_{*}, \;\mbox{对所有的}\; t\geq 0.

(H2)存在正常数K L使得

| f(t, \varphi)-f(t, \psi) |_{{\cal H} } \leq K | \varphi-\psi |_{{\cal H} },

|A(t) g(t, \varphi)-A(t)g(t, \psi) |_{{\cal H}} \leq L | \varphi-\psi |_{{\cal H} },

对每个t \geq 0\varphi, \psi \in {\cal H} 成立.

(H3) I_{k} \in C({\cal H}, {\cal H})且存在一常数 q _{k}使得

|I_{k} (\varphi)-I_{k} (\psi)|\leqq _{k}| \varphi-\psi|_{{\cal H} } ,

对每一\varphi, \psi \in {\cal H} , k=1, 2\cdots .

(H4) \sum\limits_{n=1}^{\infty}\|\sigma(t)Q^{\frac{1}{2}}e_n \|是一致收敛的, t\geq 0,且

\int_{0}^{\infty}e^{as}\| \sigma(s)\|^{p}_{{\cal L}_{Q}^{0}}{\rm d}s<\infty .

本文的主要结果如下.

定理 3.1  假定(H1)-(H4)和下述条件成立:

(ⅰ)存在一常数\widetilde{q}使得q_{k}\leq \widetilde{q}(t_{k}-t_{k-1}), k=1, 2\cdots;

(ⅱ) 4^{p-1}\left(L^{p}M_{*}^{p}+ M^{p}L^{p}\beta^{-p}+M^{p}K^{p}\beta^{-p}+ M^{p}\tilde{q}^{p}\beta^{-p} \right ) < 1 .

则方程(1.1)存在唯一温和解且是P阶矩渐近稳定的.

    将系统(1.1)转化为不动点问题.令{\cal G}表示所有{\cal F}_{t} -适应过程\Phi:[-r, \infty)\rightarrow {\cal H} 组成的空间, \Phi:[-r, \infty)\rightarrow {\cal H} t\neq t_{k}(k=1, 2\cdots )时是连续的(L^p意义下), \mathop {\lim }\limits_{t\to t_{k-}}\Phi(t)\mathop {\lim }\limits_{t\rightarrow t_{k+}}\Phi(t)存在, \mathop {\lim }\limits_{t \rightarrow t_{k-}}\Phi(t)=\Phi( t_{k}),对s \in [-r, 0]\Phi(s)=\varphi(s),且当t \rightarrow \infty时, E|\Phi(t) |^{p}_{{\cal H}} \rightarrow 0.令其上的范数为 \left| {\Phi ( \cdot )} \right|_{\cal G}^p: = \mathop {\sup }\limits_{s \ge 0} \left( {E|\Phi (s)|_{{\cal H}}^p} \right),则{\cal G}是一个Banach空间.

定义算子\pi:{\cal G} \rightarrow {\cal G}如下:

t \in [-r, 0]时, (\pi x)(t)=\varphi(t);

t \geq 0时,

\begin{eqnarray*} (\pi x)(t)&=&U(t, 0)(\varphi(0)-g(0, \varphi(-\tau(0))))+g(t, x(t-\tau(t)))\\ &&+ \int_{0}^{t}AU(t, s)g(s, x(s-\tau(s))){\rm d}s +\int_{0}^{t}U(t, s)f(s, x(s-\rho(s))){\rm d}s\\&&+\int_{0}^{t}U(t, s)\sigma(s){\rm d}B^{H}_{s}+\sum\limits_{0 < t_{k} < t}U(t, t_{k})I_{k}(x(t_{k}))\\&=&\sum\limits_{i=1}^{6}I_{i}(t), \end{eqnarray*}

下面将证明分三步.

第一步  \piP阶矩在 [0, \infty)上是连续的.

t\geq 0 |h|足够小,则对任意固定的x \in {\cal G},有

E| (\pi x)(t+h)-(\pi x)(t)|_{{\cal H}}^{p} \leq 6^{p-1}\sum\limits_{i=1}^{6}E|I_{i}(t+h)-I_{i}(t) |_{{\cal H}}^{p}.

容易验证当h \rightarrow 0时, E|I_{i}(t+h)-I_{i}(t) |_{{\cal H}}^{p} \rightarrow 0, i=1, 2, 3, 4 .由Hölder不等式,可得

\begin{eqnarray*} E|I_{5}(t+h)-I_{5}(t) |_{{\cal H}}^{p}&\leq &2^{p-1} E \bigg| \int_{t}^{t+h} U(t+h, s)\sigma(s) {\rm d}B^{H}_{s}\bigg |_{{\cal H}}^{p}\\&&+ 2^{p-1}E\bigg| \int_{0}^{t}\left(U(t+h, s)-U(t, s)\right)\sigma(s) {\rm d}B^{H}_{s} \bigg|_{{\cal H}}^{p}\\ &\leq & 2^{p-1} (I_{51}+I_{52}). \label{ture} \end{eqnarray*}

由Hölder不等式, Maslowski-Nualart[1]的引理2.2和随机分析知识,可得

\begin{eqnarray*} I_{51} &\leq& C_{p} \bigg( E| \int_{t}^{t+h}U(t+h, s)\sigma(s) {\rm d}B^{H}_{s} | ^{2}_{{\cal H}} \bigg)^{\frac{p}{2}}\\ &\leq&C_{p}\bigg(\sum\limits_{n=1}^{\infty}\int_{t}^{t+h}\int_{t}^{t+h}| U(t+h, u)\sigma(u)Q ^{\frac{1}{2}} e_{n}| \cdot | U(t+h, v)\sigma(v)Q ^{\frac{1}{2}} e_{n}|\\ &&\cdot |u-v|^{2H-2} {\rm d}u{\rm d}v \bigg)^{\frac{p}{2}} \\ &\leq&C_{p}M^{p} \bigg[H(2H-1) \int_{t}^{t+h}\int_{t}^{t+h}e^{-\beta(t+h-u)} e^{-\beta(t+h-v)} |u-v |^{2H-2} \\ &&\cdot| \sigma(u)| _{{\cal L}_{Q}^{0}({\cal K}, {\cal H})} | \sigma(v)| _{{\cal L}_{Q}^{0}({\cal K}, {\cal H})} {\rm d}u{\rm d}v \bigg ]^{\frac{p}{2}}, \end{eqnarray*}

其中C_{p} 是依赖于 p 的正常数.由假设(H4)和

\begin{eqnarray*} &&\int_{t}^{t+h}\int_{t}^{t+h}e^{-\beta(t+h-u)} e^{-\beta(t+h-v)} |u-v |^{2H-2} {\rm d}u{\rm d}v\\ &\leq&\int_{t}^{t+h}\int_{t}^{t+h}|u-v |^{2H-2} {\rm d}u{\rm d}v=\frac{1}{H(2H-1)}h^{2H}, \end{eqnarray*}

可得当h \rightarrow 0I_{51} \rightarrow 0.

类似地,可以得到

\begin{eqnarray*}I_{52}&\leq &C_{p}\left ( E| \int_{0}^{t}[U(t+h, t)-U(t, t)]U(t, s)\sigma(s) {\rm d}B^{H}_{s} | _{{\cal H}}^{2} \right )^{\frac{p}{2}}\\&\leq & C_{p}[U(t+h, t)-U(t, t)]^p \left (E| \int_{0}^{t}U(t, s)\sigma(s) {\rm d}B^{H}_{s} |_{{\cal H}} ^{2}\right)^{\frac{p}{2}}\\ & < &\infty . \end{eqnarray*}

由引理2.2,有\mathop {\lim }\limits_{h \rightarrow 0} \left[U(t+h, t)-U(t, t)\right ]=0 , 所以h \rightarrow 0I_{52} \rightarrow 0.

I_{6},根据假设(ⅰ),可以得到

\begin{eqnarray*} E|I_{6}(t+h)-I_{6}(t) |_{{\cal H}}^{p} &\leq &E\bigg( \sum\limits_{0 < t_{k} < t} q_{k} \|U(t+h, t_{k})-U(t, t_{k})\|| x(t_{k^{-}}) | _{{\cal H}} \bigg)^{p}\\&\leq& E \bigg( \sum\limits_{0 < t_{k} < t} \widetilde{q} \|U(t+h, t_{k})-U(t, t_{k})\|| x(t_{k^{-}})(t_{k}-t_{k-1}) | _{{\cal H}} \bigg )^{p} \\&\leq &E \bigg( \int_{0}^{t} \widetilde{q} \|U(t+h, s)-U(t, s)\|| x(s) | _{{\cal H}}{\rm d}s\bigg)^{p}\\ &\leq & \widetilde{q}^{p}t^{p-1} \| x(s) \| _{{\cal G}}\int_{0}^{t} \|U(t+h, s)-U(t, s)\| ^{p}{\rm d}s.~~~~~\end{eqnarray*}

应用Lebesgue控制收敛定理,当 h \rightarrow 0 时, E|I_{6}(t+h)-I_{6}(t) |_{{\cal H}}^{p}\rightarrow 0 .因此, \piP阶矩在 [0, \infty)上是连续的.

第二步  \pi ({\cal G} )\subset {\cal G} .

注意到

\begin{eqnarray*}E| (\pi x)(t)|_{{\cal H}}^{p}& \leq &6^{p-1}E|U(t, 0)(\varphi(0)-g(0, \varphi(-\tau(0)))) |_{{\cal H}}^{p} + 6^{p-1}E|g(t, x(t-\tau(t))) |_{{\cal H}}^{p}\\&&+ 6^{p-1} E\bigg|\int_{0}^{t}AU(t, s)g(s, x(s-\tau(s))){\rm d}s \bigg|_{{\cal H}}^{p}\\ &&+6^{p-1} E\bigg|\int_{0}^{t}U(t, s)f(s, x(s-\rho(s))){\rm d}s \bigg|_{{\cal H}}^{p}\\ &&+6^{p-1} E\bigg| \int_{0}^{t}U(t, s)\sigma(s){\rm d}B^{H}_{s}\bigg|_{{\cal H}}^{p}+6^{p-1} E\bigg|\sum\limits_{0 < t_{k} < t}U(t, t_{k})I_{k}(x(t_{k})) \bigg|_{{\cal H}}^{p}\\ &&= 6^{p-1}\sum\limits_{i=1}^{6} J_{i}. \end{eqnarray*}

对上式中的每一项进行估计.由假设(H1)可得当t \rightarrow \infty 时,

J_{1} \leq M^{p}e^{-p\beta t}2^{p-1}\Big( | \varphi(0)|_{{\cal H}}^{p}+L^{p}M_{*}^{p} \sup\limits_{s\in [-r, 0]}| \varphi(s)|_{{\cal H}}^{p}\Big) \rightarrow 0,

由假设(H2)可得

J_{2}\leq L^{p}\|A^{-1}(t)\|^{p}E|x(t-\tau(t))|_{{\cal H}}^{p} \leq L^{p} M_{*}^{p}E|x(t-\tau(t))|_{{\cal H}}^{p}.

因此,当t \rightarrow \infty J_{2} \rightarrow 0.

由假设(H1), (H3)和Hölder不等式可以得到

\begin{eqnarray}\label{3.1} J_{4} &\leq&E|\int_{0}^{t}Me^{-\beta( t-s)}f(s, x(s-\rho(s))){\rm d}s |_{{\cal H}}^{p} \nonumber\\& \leq&M^{p}K^{p}\left( \int_{0}^{t} e^{-\beta( t-s)}{\rm d}s\right )^{p-1} \int_{0}^{t}e^{-\beta( t-s)}E|x(s-\rho(s))|_{{\cal H}}^{p}{\rm d}s \nonumber\\& \leq&M^{p}K^{p}\beta^{1-p}\int_{0}^{t}e^{-\beta( t-s)}E|x(s-\rho(s))|_{{\cal H}}^{p}{\rm d}s .\end{eqnarray}
(3.1)

对任意x\in {\cal G}和任意\epsilon > 0 ,存在 t_{1}> 0,对t\geq t_{1} ,满足E|x(t-\rho(t))|_{{\cal H}}^{p}< \epsilon ,由(3.1)式可得

\begin{eqnarray}\label{3.2}J_{4}&\leq & M^{p}K^{p}\beta^{1-p}\bigg(\int_{0}^{t_{1}}e^{-\beta( t-s)}E|x(s-\rho(s))|_{{\cal H}}^{p}{\rm d}s+\int_{t_{1}}^{t}e^{-\beta(t-s)}E|x(s-\rho(s))|_{{\cal H}}^{p}\bigg) \nonumber \\&\leq& M^{p}K^{p}{\beta}^{1-p}e^{-\beta t}\int_{0}^{t_{1}} e^{\beta s}E|x(s-\rho(s))|_{{\cal H}}^{p}{\rm d}s+M^{p}K^{p}{\beta}^{-p} \epsilon.\end{eqnarray}
(3.2)

因为当t \rightarrow \infty e^{-\beta t} \rightarrow 0 ,由条件(ⅱ)知存在t _{2}\geq t_{1} 使得对t\geq t_{2}

\begin{equation}\label{3.3} M^{p}K^{p}{\beta}^{1-p}e^{-\beta t}\int_{0}^{t_{1}}e^{\beta s}E|x(s-\rho(s))|_{{\cal H}}^{p}{\rm d}s <\epsilon - M^{p}K^{p}{\beta}^{-p}\epsilon .\end{equation}
(3.3)

从(3.2)和(3.3)式,可以得到对任意t \geq t_{2} , J_{4}< \epsilon ,也即当t \rightarrow \infty J_{4} \rightarrow 0.

同样的方法可得

J_{3} \leq M^{p}M_{*}^{p}L^{p}\beta^{1-p}\int_{0}^{t}e^{-\beta( t-s)}E|x(s-\tau(s))|_{{\cal H}}^{p}{\rm d}s ,

即当t \rightarrow \infty J_{3} \rightarrow 0.

引理2.1和Hölder不等式可得

\begin{array}{l}{J_5} \le {C_p}{\left( {E\left| {\int_0^t U (t,s)\sigma (s){\rm{d}}B_s^H} \right|_{{\cal H}}^2} \right)^{\frac{p}{2}}}\\ \le {C_p}\left( {H(2H - 1)\sum\limits_{n = 1}^\infty {\int_0^t {\int_0^t {\left| {U(t,u)\sigma (u){Q^{\frac{1}{2}}}{e_n}} \right|} } } } \right.{\rm{\cdot}}\left| {U(t,v)\sigma (v){Q^{\frac{1}{2}}}{e_n}} \right| \cdot |u - v{|^{2H - 2}}{\rm{d}}u{\rm{d}}v{)^{\frac{p}{2}}}\\ \le {C_p}\left( {H(2H - 1){M^2}\sum\limits_{n = 1}^\infty {\int_0^t {\int_0^t {{e^{ - \beta (t - u)}}} } } \left| {\sigma (u){Q^{\frac{1}{2}}}{e_n}} \right|} \right.{e^{ - \beta (t - v)}}\left| {\sigma (v){Q^{\frac{1}{2}}}{e_n}} \right|\\ \cdot |u - v{|^{2H - 2}}{\rm{d}}u{\rm{d}}v{)^{\frac{p}{2}}}\\ \le {C_p}{c_H}{M^p}{\left( {\int_0^t {{{\left( {{e^{ - \beta (t - s)}}|\sigma (s){|_{{\cal L}_{Q}^0({\cal K},{\cal H})}}} \right)}^{\frac{1}{H}}}} {\rm{d}}s} \right)^{pH}}\\ \le {\rho _{p,H}}{M^p}{\left( {\int_0^t {{e^{ - \beta (t - s)}}} {\rm{d}}s} \right)^{pH - 1}}\int_0^t {{e^{ - \beta (t - s)}}} |\sigma (s)|_{{\cal L}_{Q}^0({\cal K},{\cal H})}^p{\rm{d}}s\end{array}

其中\rho _{p, H} 是依赖于 H p 的正常数.因此当t \rightarrow \infty J_{5} \rightarrow 0.

现在对脉冲项进行估计,从条件(ⅰ)得

\begin{eqnarray*} J_{6} &\leq &E\bigg(\sum\limits_{0 < t_{k} < t} e^{\beta( t-t_{k})} q_{k}|x(t_{k^{-}}) |_{{\cal H}}\bigg)^{p}\\ &\leq&E\bigg(\sum\limits_{0 < t_{k} < t} e^{\beta( t-t_{k})}\tilde{q}|x(t_{k^{-}})(t_{k}-t_{k-1} ) |_{{\cal H}}\bigg)^{p}\\ &\leq & E\bigg(\int_{0}^{t}e^{-\beta( t-s)}\tilde{q}|x(s) |_{{\cal H}}{\rm d}s \bigg)^{p}\\ &\leq &M^{p}\tilde{q}^{p}\beta^{1-p} \int_{0}^{t}e^{-\beta( t-s)}E|x(s)|_{{\cal H}}^{p}{\rm d}s.\end{eqnarray*}

通过使用跟 J_{4} 相同的技巧,可以得到当t \rightarrow \infty J_{6} \rightarrow 0.

综上,当t \rightarrow \infty E|(\pi x)(t) |^{p}\rightarrow 0.\pi ({\cal G} )\subset {\cal G} .

第三步  \pi是一个压缩映射.

x, y \in {\cal G} .t \in {\cal G},有

\begin{eqnarray*} &&\sup\limits_{t \in [0, T]} E|(\pi x)(t) -(\pi y)(t) |_{{\cal H}}^{p}\\ & \leq&4^{p-1}\sup\limits_{t \in [0, T]} E|g(t, x(t-\tau(t)))-g(t, y(t-\tau(t))) |_{{\cal H}}^{p}\\&&+ 4^{p-1}\sup\limits_{t \in [0, T]} E| \int_{0}^{t}AU(t, s)(g(s, x(s-\tau(s)))-g(t, y(s-\tau(s)))){\rm d}s|_{{\cal H}}^{p}\\&&+4^{p-1}\sup\limits_{t \in [0, T]} E| \int_{0}^{t}U(t, s) (f(s, x(s-\rho(s)))-f(t, y(s-\rho(s)))){\rm d}s |_{{\cal H}}^{p}\\&&+ 4^{p-1}\sup\limits_{t \in [0, T]} E|\sum\limits_{0 < t_{k} < t}U(t, t_{k})(I_{k}(x(t_{k}))- I_{k}(y(t_{k})) ) |_{{\cal H}}^{p}\\ &&\leq 4^{p-1}(L^{p}M_{*}^{p}+ M^{p}L^{p}\beta^{-p}+M^{p}K^{p}\beta^{-p}+ M^{p}\tilde{q}^{p}\beta^{-p})\sup\limits_{t \geq 0}E|x(t)- y(t)|_{{\cal H}}^{p}.\end{eqnarray*}

从条件(ⅱ)知 \pi是收缩的.所以根据Banach不动点定理,方程(1.1)存在唯一的温和解x \in{\cal G}.

最后,证明方程(1.1)的温和解P阶矩渐近稳定的.

\epsilon > 0 ,取\delta_{0}> 0 使得6^{p-1} \big\{ M^{p}2^{p-1}(1+ L^{p}M_{*}^{p}) +\frac{1}{5^{p-1}} \big\}\delta_{0} < \epsilon .

x(t)= x(t, \varphi) 是方程(1.1)的温和解且\|\varphi \|^{p} < \delta_{0},则对所有的 t \geq 0 E|x(t) |_{{\cal H}}^{p} <\epsilon .另一方面,注意到对所有的 r > 0 , t \in [-r, 0] E|x(t) |_{{\cal H}}^{p} <\epsilon ,若存在t^{*}> 0使得 E|x(t^{*}) |_{{\cal H}}^{p} = \epsilon -r \leq s<t^{*}时成立,则有条件(ⅱ),有

\begin{eqnarray*} E|x(t^{*}) |_{{\cal H}}^{p} &\leq& 6^{p-1}\Big\{ M^{p}2^{p-1}(1+L^{p} M_{*}^{p}) + L^{p}+M^{p}L_{*}^{p}\beta^{-p}+M^{p}K^{p}\beta^{-p}+ M^{p}\tilde{q}^{p}\beta^{-p}\Big\}\delta_{0} \\ &\leq& 6^{p-1}\bigg\{ M^{p}2^{p-1}(1+ L^{p}M_{*}^{p}) +\frac{1}{5^{p-1}}\bigg\}\delta_{0} \\&&< \epsilon .\end{eqnarray*}

这与t^{*} 的定义矛盾.因此方程(1.1)温和解是渐近稳定的.证明完毕.

推论3.1  假定(H1)-(H5)成立.如果4(L^{2}M_{*}^{2}+M^{2}L^{2}\beta^{-2}+M^{2}K^{2}\beta^{-2})<1, 则称方程(1.1)的温和解是均方渐近稳定的.

4 例子

考虑如下由分数布朗运动驱动的延迟为r_{1}r_{2}的脉冲中立型随机微分方程

\begin{equation}\label{4.1} \left\{ \begin{array}{ll} \frac{\partial}{\partial t}\left[u(t, \xi)-G(t, u(t-r_{1}, \xi))\right]=[\frac{\partial^{2}}{\partial\xi^{2}}u(t, \xi)+b(t, \xi)u(t, \xi)]{\rm d}t \\\; \;+F(t, u(t-r_{2}, \xi)){\rm d}t + \sigma(t){\rm d}B^{H}(t), ~~ \xi \in [0, \pi], ~~~ t \geq 0, \\ \Delta u(t_{k}, \xi) = u(t_{k}^{+}, \xi)-u(t_{k}^{-}, \xi)=I_{k}(u(t_{k}, \xi)), \\ \qquad\qquad\qquad\qquad~~~\xi \in [0, \pi], ~~~~t= t_{k}, ~~~ k=1, 2, \cdots , \\ u(t, 0)=u(t, \pi)=0, ~~~~~~~~~~~ ~~~~~~ t \geq 0, \\ u(t)=\phi(t), \;\;~~~~~~~~~~~~~~~~ t \in [-r , 0], \end{array} \right. \end{equation}
(4.1)

其中0 \leq r_{i}\leq r <\infty, i=1, 2. B^{H}(t) 是分数布朗运动, F, G:\mathbb{R}^{+}\times\mathbb{R} \rightarrow \mathbb{R}是连续函数.

{\cal H}=L^{2}([0, \pi]) ,算子 A:D(A)\subset{\cal H}\rightarrow {\cal H} 定义为Ay=y''

D(A)=\{ y \in {\cal H}: y''\in {\cal H}, ~y(0)=y(\pi)=0 \} .

显然 A {\cal H} 上解析半群 \{T(t) \}_{t \geq 0} 的无穷小生成元,对\xi \in {\cal H} t\geq 0 , y_{n}(\xi)=\sum\limits _{n=1}^{\infty}e^{-n^{2}t}\sin(n\xi) .并且\{ y_{n}, n \in N\} {\cal H} 的一个标准正交基.

A(t):D(A)\subset{\cal H}\rightarrow {\cal H} 定义如下:

A(t)x(\xi)= Ax(\xi)+ b(t, \xi)x(\xi) .

b(\cdot)连续且对每个 t\in \mathbb{R} b(t, \xi)\leq -\gamma ~(\gamma >0),则系统

\begin{eqnarray*}\left\{\begin{array}{ll}\displaystyle u'(t)=A(t)u(t), \hskip0.1cmt\geq s, \\ \displaystyle u(s)=x\in H, \end{array} \right.\end{eqnarray*}

有如下定义的发展算子族:

U(t, s)x(\xi)=\Big[T(t-s){\rm e}^{\int_s^t b(\tau, \xi)\, {\rm d}\tau}x\Big](\xi).

由上知, U(t, s)是指数稳定的(详见文献[11-12]),且对每个t, s\in [0, T]t>s,

||U(t, s)||\leq {\rm e}^{-(1+\gamma)(t-s)}.

此外, A(t)满足假设(H1), \sigma(t)满足假设(H4).

为了将方程(4.1)写成方程(1.1)的抽象形式,作以下假设:

ⅰ)函数F, G: \mathbb{R}^{+} \times {\cal H} \rightarrow {\cal H} 连续,满足下列条件

| F(t, x) -F(t, y)| \leq a_{1}|x-y | ,

| A(t)G(t, x) - A(t)G(t, y)| \leq a_{2}|x-y| ,

| A^{-1}(t)| \leq a_{3},

其中a_{1}, a_{2}是正常数, t\geq 0, x, y \in {\cal H} .

ⅱ)存在正常数 h_{k}, k=1, 2, \cdots ,使得|I_{k}(x)-I_{k}(y) | \leq h_{k}|x-y |, k=1, 2, \cdots, x, y \in {\cal H} .

x(t)(\xi)=u(t, \xi), ~~~~~~~~~~ t\geq 0, ~ \xi \in [0, \pi],

I_{k}( x(t_{k}, \xi))=\Delta u(t_{k}, \xi), ~~~~~~~~~~ \xi \in [0, \pi], ~k=1, 2, \cdots,

f(t, u)(\xi)=F(t, u(\xi)), ~~~~~~~ t\geq 0, ~ \xi \in [0, \pi],

g(t, u)(\xi)=G(t, u(\xi)), ~~~~~~~ t\geq 0, ~ \xi \in [0, \pi],

x(t, \xi)=\phi(t, \xi), ~~~~~~ t\in [-r, 0], ~\xi \in [0, \pi].

则方程(4.1)可写成方程(1.1)的抽象形式且(H1)-(H4)满足,其中M=1, \beta=1+\gamma, K=a_{1}, L=a_{2}, M_{*}=a_{3}, q_{k}=h_{k}.

因此,由定理3.1知,若q_{k}\leq \widetilde{q}(t_{k}-t_{k-1}), k=1, 2\cdots 4^{p-1}[L^{p}M_{*}^{p}+ (L^{p}+K^{p}+\tilde{q}^{p})(1+\gamma)^{-p}]< 1 成立,系统(4.1)的温和解是P阶矩渐近稳定的.

5 结论

本文研究了分数布朗运动驱动的脉冲中立型随机泛函微分方程的温和解的存在性及P阶矩渐近稳定性.假设非线性项是Lipschitz连续的.采用了不动点方法得到结论.并举例说明了定理的可行性.接下来,将利用文献[3]中的技术和思想,研究分数布朗运动驱动的非确定扩散系数的随机发展方程温和解的存在性和渐近性.

参考文献

Maslowski B , Nualart D .

Evolution equations driven by a fractional Brownian motion

J Funct Anal, 2003, 110: 277- 305

URL     [本文引用: 1]

Boufoussi B , Hajji S .

Neutral stochastic functional differential equations driven by a fractional Brownian motion in a Hilbert space

Statist Probab Lett, 2011, 82 (8): 1549- 1558

[本文引用: 2]

Boufoussi B , Hajji S .

Stochastic delay differential equations in a Hilbert space driven by fractional Brownian motion

Statist Probab Lett, 2017, 129: 222- 229

DOI:10.1016/j.spl.2017.06.006      [本文引用: 2]

Feyel D , Pradelle A de la .

On fractional Brownian processes

Potential Anal, 1999, 10: 273- 288

DOI:10.1023/A:1008630211913      [本文引用: 1]

Nualart D . The Malliavin Calculus and Related Topics. Berlin: Springer-Verlag, 2006

[本文引用: 2]

Ruan D H , Luo J W .

Fixed points and exponential stability of stochastic functional partial differential equations driven by fractional Brownian motion

Publ Math Debrecen, 2015, 86: 285- 293

[本文引用: 1]

Prato G Da , Zabczyk J . Stochastic Equations in Infinite Dimensions. Cambridge: Cambridge Univ Press, 1992

[本文引用: 1]

Arthi G , Park Ju H , Jung H Y .

Existence and exponential stability for neutral stochastic integrodifferential equations with impulses driven by a fractional Brownian motion

Commun Nonlinear Sci Numer Simul, 2016, 32: 145- 157

DOI:10.1016/j.cnsns.2015.08.014      [本文引用: 1]

Cui J , Yan L , Sun X .

Exponential stability for neutral stochastic partial differential equations with delays and Poisson Jumps

Statist Probab Lett, 2011, 81: 1970- 1977

DOI:10.1016/j.spl.2011.08.010      [本文引用: 1]

Luo J W .

Stability of stochastic partial differential equations with infinite delays

J Comput Appl Math, 2008b, 222: 364- 371

DOI:10.1016/j.cam.2007.11.002      [本文引用: 1]

Acquistapace P , Terreni B .

A unified approach to abstract linear nonautonomous parabolic equations

Rend Sem Mat Univ Padova, 1987, 78: 47- 107

[本文引用: 2]

Acquistapace P , Terreni B .

Initial boundary value problems and optimal control for nonautonomous parabolic systems

SIAM J Control Optim, 1991, 29: 89- 118

DOI:10.1137/0329005      [本文引用: 2]

Sakthivel R , Luo J W .

Asymptotic stability of impulsive stochastic partial differential equations with infinite delays

J Math Anal Appl, 2009, 356: 1- 6

DOI:10.1016/j.jmaa.2009.02.002      [本文引用: 1]

Caraballo T , Liu K .

Exponential stability of mild solutions of stochastic partial differential equations with delays

Stoch Anal Appl, 1999, 17: 743- 763

DOI:10.1080/07362999908809633      [本文引用: 1]

Caraballo T , Garrido-Atienza M J , Taniguchi T .

The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion

Nonlinear Anal, 2011, 74: 3671- 3684

DOI:10.1016/j.na.2011.02.047      [本文引用: 1]

Caraballo T , Mamadou A D .

Asymptotic stability of neutral stochastic functional integro-differential equations

Electron Commun Probab, 2015, 20 (1): 1- 13

[本文引用: 2]

Caraballo T , Garrido-Atienza Mar'a J , Jos'e Real .

Asymptotic Stability of Nonlinear Stochastic Evolution Equations

Stoch Anal Appl, 2003, 21 (2): 301- 327

DOI:10.1081/SAP-120019288      [本文引用: 1]

Duncan T E , Maslowski B , Pasik-Duncan B .

Fractional Brownian motion and stochastic equations in Hilbert spaces

Stoch Dyn, 2002, 2: 225- 250

DOI:10.1142/S0219493702000340      [本文引用: 1]

Duc L H , Garrido-Atienzac M J .

Exponential stability of stochastic evolution equations driven by small fractional Brownian motion with Hurst parameter in (\frac{1}{2}, 1)

J Differential Equations, 2018, 264: 1119- 1145

DOI:10.1016/j.jde.2017.09.033      [本文引用: 1]

Taniguchi T , Liu K , Truman A .

Existence, uniqueness and asymptotic behavior of mild solutions to stochastic functional differential equations in Hilbert spaces

J Differential Equations, 2002, 181: 72- 91

DOI:10.1006/jdeq.2001.4073      [本文引用: 1]

Mao X . Stochastic Differential Equations and Applications. Chichester, UK: Horwood Publishing, 1997

[本文引用: 1]

Ren Y , Cheng X , Sakthivel R .

On time-dependent stochastic evolution equations driven by fractional Brownian motion in Hilbert space with finite delay

Math Method Appl Sci, 2013, 37: 2177- 2184

URL     [本文引用: 1]

Ren Y , Cheng X , Sakthivel R .

Impulsive neutral stochastic functional integro-differential equations with infinite delay driven by fBm

Appl Math Comput, 2014, 247: 205- 212

URL     [本文引用: 1]

Revathib P , Sakthivel R , Ren Y .

Stochastic functional differential equations of Sobolev-type with infinite delay

Statist Probab Lett, 2016, 109: 68- 77

DOI:10.1016/j.spl.2015.10.019      [本文引用: 1]

Bahuguna D , Sakthivel R , Chadha A .

Asymptotic stability of fractional impulsive neutral stochastic partial integro-differential equations with infinite delay

Stoch Anal Appl, 2017, 39: 63- 88

URL     [本文引用: 1]

Ren Y , Hou T , Sakthivel R .

Non-densely defined impulsive neutral stochastic functional differential equations driven by fBm in Hilbert space with infinite delay

Front Math China, 2015, 10: 351- 365

DOI:10.1007/s11464-015-0392-z      [本文引用: 1]

/