数学物理学报, 2019, 39(3): 518-528 doi:

论文

三维带有衰减项的不可压缩磁流体力学方程组弱解与强解的研究

李凯,, 杨晗, 王凡

Study on Weak Solution and Strong Solution of Incompressible MHD Equations with Damping in Three-Dimensional Systems

Li Kai,, Yang Han, Wang Fan

通讯作者: 李凯, E-mail: 1033166048@qq.com

收稿日期: 2018-04-12  

基金资助: 国家自然科学基金.  11701477

Received: 2018-04-12  

Fund supported: the NSFC.  11701477

摘要

论文研究了带有衰减项的磁流体力学方程组的柯西问题.当$\beta \ge 1$及初值${u_0}$, $ {b_0} \in {L^2}({{\mathbb{R} ^3}})$时,采用Galerkin方法证明了方程组存在全局弱解.并且当初值${u_0} \in H_0^1 \cap {L^{\beta + 1}}({{\mathbb{R} ^3}})$, ${b_0} \in H_0^1({{\mathbb{R} ^3}})$时,可以得到方程组存在唯一局部强解.

关键词: 磁流体力学方程组 ; 衰减项 ; 弱解 ; 强解

Abstract

In this paper, the Cauchy problem of the MHD equations with damping is studied. When $\beta \ge 1$ and initial data satisfy ${u_0}$, ${b_0} \in {L^2}({{\mathbb{R} ^3}})$, the Galerkin method is used to prove the global weak solution of the equations. When the initial data satisfy ${u_0} \in H_0^1 \cap {L^{\beta + 1}}({{\mathbb{R} ^3}})$, ${b_0} \in H_0^1({{\mathbb{R} ^3}})$, it is possible to obtain a unique local strong solution for the equation group.

Keywords: MHD equations ; Damping ; Weak solutions ; Strong solutions

PDF (340KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

李凯, 杨晗, 王凡. 三维带有衰减项的不可压缩磁流体力学方程组弱解与强解的研究. 数学物理学报[J], 2019, 39(3): 518-528 doi:

Li Kai, Yang Han, Wang Fan. Study on Weak Solution and Strong Solution of Incompressible MHD Equations with Damping in Three-Dimensional Systems. Acta Mathematica Scientia[J], 2019, 39(3): 518-528 doi:

1 引言

本文研究了如下带有衰减项的不可压缩的磁流体力学方程组的柯西问题

$ \begin{eqnarray} \left\{\begin{array}{ll} {u_t} + u \cdot \nabla u + \nabla p - \mu \Delta u + \eta |u{|^{\beta - 1}}u = b \cdot \nabla b, \\ {b_t} + u \cdot \nabla b - \nu \Delta b = b \cdot \nabla u, \\ \nabla \cdot u = 0, \nabla \cdot b = 0, \\ u{|_{t = 0}} = {u_0}, b{|_{t = 0}} = {b_0}, \\ |u| \to 0, |b| \to 0, \quad {\rm as}\ |x| \to 0. \end{array}\right. \end{eqnarray} $

这里$ x = ({{x_1}, {x_2}, {x_3}}) \in {{\Bbb R} ^3} $, $ t \ge 0 $, $ u = u({x, t}) = ({{u_1}({x, t}), {u_2}({x, t}), {u_3}({x, t})}) $, $ p = p({x, t}) $, $ b = b({x, t}) = ({{b_1}({x, t}), {b_2}({x, t}), {b_3}({x, t})}) $,其中$ u $是速度场, $ b $是磁场, $ p $是压力, $ \mu $是流体粘性系数, $ \eta $是阻尼系数, $ \nu $是磁场的耗散系数并且$ \mu, \eta, \nu \ge 0 $, $ \beta $是常数且满足$ \beta \ge 1 $.已知函数$ {u_0} = {u_0}(x) $$ {b_0} = {b_0}(x) $分别为初始速度和初始磁场.

$ \eta = 0 $时, (1.1)式可化为磁流体方程组.磁流体力学是流体力学的一个重要分支,主要研究等离子体这种导电流体在磁场中的运动.磁流体方程模型的具体推导,参见文献[1-3].文献[4-5]证明了空间维数$ n = 2 $时,解的整体适定性以及$ n = 3 $时,解的局部适定性.而关于磁流体力学方程组的全局正则性的最新进展,参见文献[6].众所周知,对于磁流体方程组(1.1),若令$ b = 0 $,则方程组(1.1)可化为Navier-Stokes方程,这正是柯朗研究所提出的七个世纪难题之一,而磁流体方程比Navier-Stokes方程更为复杂,对于它的深入研究无疑会对Navier-Stokes方程起到一定的促进作用.当$ \eta > 0 $时,衰减项$ |u{|^{\beta - 1}}u $是一个外力,在很多物理情景中都有所描述,见文献[7].文献[8]中作者首先研究了带有衰减项的不可压缩的Navier-Stokes方程的适定性问题,采用经典的Galerkin方法构造逼近解,建立相应的先验估计,进一步,由紧性原理可得:当$ \beta \ge 1 $时,存在全局弱解,当$ \beta \ge {7 \over 2} $时,存在全局强解且当$ {7 \over 2} \le \beta \le 5 $时,得到了强解的唯一性.而文献[9]对[8]所得结果进行了进一步完善,将全局强解的存在范围扩充到了$ \beta \ge 3 $,且在$ 3 \le \beta \le 5 $时,得到了强解的唯一性.在文献[8-9]的基础上,文献[10]得到了强解在$ \beta \ge 1 $时的唯一性.受到文献[8-10]的启发,本文将结论推广到了磁流体力学方程组(1.1),得到了在$ \beta \ge 1 $时,全局弱解的存在性以及局部强解的存在性和唯一性.

这篇文章的结构安排如下:第2节证明了方程组(1.1)的全局弱解在$ \beta \ge 1 $时的存在性;第3节证明了方程组(1.1)的局部强解的存在性和唯一性.在这篇文章中,不失一般性,假设$ \mu = \eta = \nu = 1 $,将函数$ f $$ {L^p} $范数表示为$ {\rm{||}}f|{|_{{L^p}}} $$ {\rm{||}}f|{|_p} $,另外本文中出现的常数若无特别说明均记为$ C $,不加以区别.

2 弱解的存在性

本节将证明问题(1.1)的弱解的全局存在性,下面先给出弱解的定义.

定义2.1  $ (u(x, t), b(x, t), p(x, t)) $被称为问题(1.1)的弱解.如果对于任意的$ T > 0 $,下面的条件都成立:

(1)

(2)对于任意的$ \phi \in C_0^\infty (\left[{0, T} \right] \times {{\Bbb R} ^3}) $$ \phi (\cdot, T) = 0 $,有

$ \begin{eqnarray} && - \int_0^T {(u, {\phi _t})} {\rm d}t + \int_0^T {\int_{{{\Bbb R} ^3}} {(u \cdot \nabla )u\phi } } {\rm d}x{\rm d}t + \int_0^T {\int_{{{\Bbb R} ^3}} {\nabla u:\nabla \phi } } {\rm d}x{\rm d}t \\ &&+ \int_0^T {\int_{{{\Bbb R} ^3}} {|u{|^{\beta - 1}}u\phi } } {\rm d}x{\rm d}t - \int_0^T {\int_{{{\Bbb R} ^3}} b } \nabla b\phi {\rm d}x{\rm d}t = ({u_0}, \phi (0)), \\ & &- \int_0^T {(b, {\phi _t})} {\rm d}t + \int_0^T {\int_{{{\Bbb R} ^3}} {(u \cdot \nabla )b\phi } } {\rm d}x{\rm d}t + \int_0^T {\int_{{{\Bbb R} ^3}} {\nabla b:\nabla \phi } } {\rm d}x{\rm d}t \\ && - \int_0^T {\int_{{{\Bbb R} ^3}} b } \nabla u\phi {\rm d}x{\rm d}t = ({b_0}, \phi (0)). \end{eqnarray} $

(3) $ \nabla \cdot u(x, t) $$ \nabla \cdot b(x, t) $$ {{\Bbb R} ^3} \times \left[{0, T} \right] $上几乎处处为$ 0 $.

在(2.1)式中, $ {\nabla u} $表示矩阵$ {({\partial _i}{u_j})_{3 \times 3}} $, $ {\nabla b} $表示矩阵$ {({\partial _i}{b_j})_{3 \times 3}} $.对于两个矩阵$ A = ({a_{ij}}) $$ B = ({b_{ij}}) $,则$ A:B = \sum\limits_{i, j = 1}^3 {{a_{ij}}{b_{ij}}} $,符号$ (, ) $表示在$ {L^2}({{\Bbb R} ^3}) $上的内积,函数$ \phi (0) = \phi ({ \cdot, 0}) $.

本节的主要结论由下面的定理2.1给出.

定理2.1  假设$ \beta \ge 1 $$ {u_0} \in {L^2}({{\Bbb R} ^3}) $, $ {b_0} \in {L^2}({{\Bbb R} ^3}) $.那么对于任意的$ T > 0 $,问题(1.1)存在着一个弱解$ (u(x, t), p(x, t), b(x, t)) $使得

$ \begin{equation} \begin{array}{l} u \in {L^\infty }(0 , T ;{L^2}({{\Bbb R} ^3} )) \cap {L^2} (0 , T ;H_0^1({{\Bbb R} ^3})) \cap {L^{\beta + 1}}(0 , T ;{L^{\beta + 1}}({{\Bbb R} ^3})), \\ b \in {L^\infty }(0 , T ;{L^2}({{\Bbb R} ^3} )) \cap {L^2} (0 , T ;H_0^1({{\Bbb R} ^3})), \end{array} \end{equation} $

并且

$ \begin{eqnarray} && \mathop {\sup }\limits_{0 \le t \le T} ||u||_{{L^2}}^2 + \mathop {\sup }\limits_{0 \le t \le T} ||b||_{{L^2}}^2 + 2\int_0^T {||\nabla u||_{{L^2}}^2} {\rm d}t + 2\int_0^T {||\nabla b||_{{L^2}}^2} {\rm d}t\\ && + 2\int_0^T {||u||_{{L^{\beta + 1}}}^{\beta + 1}} {\rm d}t \le ||{u_0}||_{{L^2}}^2 + ||{b_0}||_{{L^2}}^2. \end{eqnarray} $

 因为$ H_0^1 $是可分空间且$ C_0^\infty $$ H_0^1 $中稠密.因此存在着$ C_0^\infty $中的序列$ {w_1}, {w_2}, \cdots, {w_m} $,对于任意的$ m $,分别定义逼近解$ {u_m} $, $ {b_m} $如下

并且

$ \begin{eqnarray} &&({u_m}'(t), {w_j}) + ({u_m}(t) \cdot \nabla {u_m}(t), {w_j}) + (\nabla {u_m}(t), \nabla {w_j}) + (|{u_m}{|^{\beta - 1}}{u_m}(t), {w_j})\\ && = ({b_m}(t) \cdot \nabla {b_m}(t), {w_j}), \end{eqnarray} $

$ \begin{eqnarray} && ({b_m}'(t), {w_j}) + ({u_m}(t) \cdot \nabla {b_m}(t), {w_j}) + (\nabla {b_m}(t), \nabla {w_j}) = ({b_m}(t) \cdot \nabla {u_m}(t), {w_j}), \end{eqnarray} $

$ t \in \left[{0, T} \right] $, $ j = 1, 2, 3, \cdots, m $,并且在$ {L^2} $$ {u_{m0}} \to {u_0} $, $ {b_{m0}} \to {b_0} $$ m \to \infty $.

这里需要先得出一个对于$ {u_m}, {b_m} $的先验估计.

引理2.1  假设$ {u_m}, {b_m} \in {L^2} $,那么对于任意给定的$ T > 0 $,任意的$ \beta \ge 1 $,有

 将(2.4)式两端同时乘以$ {g_{jm}}(t) $,然后关于$ j = 1, 2, \cdots, m $求和.将(2.5)式两端同时乘以$ {h_{jm}}(t) $,然后也关于$ j = 1, 2, \cdots, m $求和.最后再将得到的两个结果式相加,可得

上式中用到结论:对于$ u \in H_0^1 $$ v \in {H^1} $,可得$ ((u \cdot \nabla)v, v) = 0 $.

再将上式在$ ({0, T}) $上关于$ t $积分,可得

$ \begin{eqnarray} &&\mathop {\sup }\limits_{0 \le t \le T} ||{u_m}||_{{L^2}}^2 + \mathop {\sup }\limits_{0 \le t \le T} ||{b_m}||_{{L^2}}^2 + 2\int_0^T {||\nabla u||_2^2} {\rm d}t + 2\int_0^T {||\nabla b||_2^2} {\rm d}t + 2\int_0^T {||u||_{{L^{\beta + 1}}}^{\beta + 1}} {\rm d}t\\ & \le& ||{u_0}||_{{L^2}}^2 + ||{b_0}||_{{L^2}}^2. \end{eqnarray} $

引理2.1得证.

使用上面的引理2.1,通过一个标准的过程,容易得到逼近解

的全局存在性.然后使用文献[11]中定理2.2来证明$ {u_m}, {b_m} $(或者它们的子列)对于任意的$ \Omega \subset {{\mathbb R}^3} $$ {L^2} \cap {L^\beta }(\left[{0, T} \right] \times \Omega) $上强收敛.将$ {u_m}, {b_m} $$ \left[{0, T} \right] $上延拓到$ {\Bbb R} $. $ {{\tilde u}_m} $$ \left[{0, T} \right] $上等于$ {u_m} $,在其补集上等于$ 0 $. $ {{\tilde b}_m} $$ \left[{0, T} \right] $上等于$ {b_m} $,在其补集上等于$ 0 $.同样地,把$ {g_{jm}}(t) $$ {h_{jm}}(t) $延拓到$ {\Bbb R} $上.令$ {{\tilde g}_{jm}}(t) = 0 $, $ {{\tilde h}_{jm}}(t) = 0 $,当$ t \in {\Bbb R} \backslash \left[{0, T} \right] $. $ {{\tilde u}_m} $, $ {{\tilde b}_m} $, $ {{\tilde g}_{jm}} $, $ {{\tilde h}_{jm}} $关于时间$ t $的Fourier变换分别为$ {\widehat {\widetilde u}_m} $, $ {\widehat {\widetilde b}_m} $, $ {\widehat {\widetilde g}_{jm}} $, $ {\widehat {\widetilde h}_{im}} $.

延拓之后的逼近解$ {{\tilde u}_m} $, $ {{\tilde b}_m} $将会满足

$ \begin{eqnarray} {{\rm d}\over {{\rm d}t}}( {{{\tilde u}_m}, {w_j}} ) & = & ( {{{\tilde u}_m} \cdot \nabla {{\tilde u}_m}, {w_j}} ) + ( {\nabla {{\tilde u}_m}, \nabla {w_j}} ) + ( {|{{\tilde u}_m}{|^{\beta - 1}}{{\tilde u}_m}, {w_j}} ) - ( {{{\tilde b}_m} \cdot \nabla {{\tilde b}_m}, {w_j}} ) \\ && + ( {{u_{0m}}, {w_j}} ){\delta _0} - ({u_m}(T), {w_j}){\delta _T}, \quad j = 1, 2, \cdots , m, \end{eqnarray} $

$ \begin{eqnarray} {{\rm d}\over {{\rm d}t}}( {{{\tilde b}_m}, {w_j}} ) & = & ( {{{\tilde u}_m} \cdot \nabla {{\tilde b}_m}, {w_j}} ) + ( {\nabla {{\tilde b}_m}, \nabla {w_j}} ) - ( {{{\tilde b}_m} \cdot \nabla {{\tilde u}_m}, {w_j}} ) + ( {{b_{0m}}, {w_j}} ){\delta _0} \\ & & - ({b_m}(T), {w_j}){\delta _T}, \quad j = 1, 2, \cdots , m, \end{eqnarray} $

其中$ {\delta _0} $, $ {\delta _T} $分别为$ {0, T} $处的Dirac分布.

对(2.7)式和(2.8)式两端分别做Fourier变换得

$ \begin{eqnarray} 2\pi {\rm i}\tau ({\widehat {\widetilde u}_m}, {w_j})& = & ({\widehat {\widetilde f}_m}, {w_j}) + (\widehat {|{{\tilde u}_m}{|^\beta }{{\tilde u}_m}}, {w_j}) - ( {\widehat {{{\tilde b}_m} \cdot \nabla {{\tilde b}_m}}, {w_j}} )\\ && + ( {{u_{0m}}, {w_j}} )- ({u_m}(T), {w_j})\exp ( - 2\pi {\rm i}T\tau ), \end{eqnarray} $

$ \begin{equation} 2\pi {\rm i}\tau ({\widehat {\widetilde b}_m}, {w_j}) = ({\widehat {\widetilde g}_m}, {w_j}) - ( {\widehat {{{\tilde b}_m} \cdot \nabla {{\tilde u}_m}}, {w_j}} ) + ( {{b_{0m}}, {w_j}} )- ({b_m}(T), {w_j})\exp ( - 2\pi {\rm i}T\tau ). \end{equation} $

对(2.9)式和(2.10)式两端分别同时乘以$ {\widehat {\widetilde g}_{im}}(\tau) $, $ {\widehat {\widetilde h}_{im}}(\tau) $并且关于$ j = 1, 2, \cdots, m $分别相加得

$ \begin{eqnarray} 2\pi {\rm i}\tau ||{\widehat {\widetilde u}_m}||_{{L^2}}^2 & = & ({\widehat {\widetilde f}_m}, {\widehat {\widetilde u}_m}) + (\widehat {|{{\tilde u}_m}{|^\beta }{{\tilde u}_m}}, {\widehat {\widetilde u}_m}) - ( {\widehat {{{\tilde b}_m} \cdot \nabla {{\tilde b}_m}}, {{\widehat {\widetilde u}}_m}} )\\ && + ( {{u_{0m}}, {{\widehat {\widetilde u}}_m}} ) - ({u_m}(T), {\widehat {\widetilde u}_m})\exp ( - 2\pi {\rm i}T\tau ), \end{eqnarray} $

$ \begin{equation} 2\pi {\rm i}\tau ||{\widehat {\widetilde b}_m}||_{{L^2}}^2 = ({\widehat {\widetilde g}_m}, {\widehat {\widetilde b}_m}) - ( {\widehat {{{\tilde b}_m} \cdot \nabla {{\tilde u}_m}}, {{\widehat {\widetilde b}}_m}} ) + ( {{u_{0m}}, {{\widehat {\widetilde b}}_m}} ) - ({u_m}(T), {\widehat {\widetilde b}_m})\exp ( - 2\pi {\rm i}T\tau ). \end{equation} $

对于任意$ v \in {L^2}({0, T; H_0^1}) \cap {L^{\beta + 1}}(0, T; {L^{\beta + 1}}) $,有

对于给定的$ T > 0 $,有

因此

$ \begin{eqnarray} \mathop {\sup }\limits_{\tau \in R} ||{\widehat {\widetilde f}_m}( \tau )|{|_{{H^{ - 1}}}} \le \int_0^T {||{f_m}} (t)|{|_{{H^{ - 1}}}}{\rm d}t \le C, \end{eqnarray} $

$ \begin{eqnarray} \mathop {\sup }\limits_{\tau \in R} ||{\widehat {\widetilde g}_m}( \tau )|{|_{{H^{ - 1}}}} \le \int_0^T {||{g_m}} (t)|{|_{{H^{ - 1}}}}{\rm d}t \le C. \end{eqnarray} $

对于$ ||{{\tilde b}_m} \cdot \nabla {{\tilde b}_m}|{|_{{L^2}}} $$ ||{{\tilde b}_m} \cdot \nabla {{\tilde u}_m}|{|_{{L^2}}} $有如下估计

易得

$ \begin{eqnarray} \mathop {\sup }\limits_{\tau \in R} ||\widehat {{{\tilde b}_m} \cdot \nabla {{\tilde b}_m}}|{|_{{L^2}}} \le C, \end{eqnarray} $

$ \begin{eqnarray} \mathop {\sup }\limits_{\tau \in R} ||\widehat {{{\tilde b}_m} \cdot \nabla {{\tilde u}_m}}|{|_{{L^2}}} \le C. \end{eqnarray} $

由引理2.1中有

于是

$ \begin{equation} \mathop {\sup }\limits_{\tau \in R} ||\widehat {|{u_m}{|^{\beta - 1}}{u_m}}( \tau )|{|_{{{\beta + 1} \over \beta }}} \le C. \end{equation} $

容易从引理2.1中得到

$ \begin{equation} |{u_m}(0)|{|_{{L^2}}} \le C, ||{u_m}(T)|{|_{{L^2}}} \le C, \quad ||{b_m}( 0 )|{|_{{L^2}}} \le C, ||{b_m}( T )|{|_{{L^2}}} \le C. \end{equation} $

由(2.13)–(2.18)式容易得到

对于任意给定的$ \gamma $, $ 0 < \gamma < {1 \over 4} $,有

因此

$ \begin{eqnarray} \int_{ - \infty }^\infty {|\tau {|^{2\gamma }}||{{\widehat {\widetilde u}}_m}||_{{L^2}}^2} {\rm d}\tau & \le& C\int_{ - \infty }^\infty {{{1 + |\tau |} \over {1 + |\tau {|^{1 - 2\gamma }}}}} ||{\widehat {\widetilde u}_m}||_{{L^2}}^2{\rm d}\tau\\ &\le& C\int_{ - \infty }^\infty {||{{\widehat {\widetilde u}}_m}||_{{L^2}}^2} {\rm d}\tau + C\int_{ - \infty }^\infty {{{||{{\widehat {\widetilde u}}_m}( \tau )|{|_{{H^1}}}} \over {1 + |\tau {|^{1 - 2\gamma }}}}} {\rm d}\tau\\&& + C\int_{ - \infty }^\infty {{{||{{\widehat {\widetilde u}}_m}( \tau )|{|_{\beta + 1}}} \over {1 + |\tau {|^{1 - 2\gamma }}}}} {\rm d}\tau , \end{eqnarray} $

$ \begin{eqnarray} \int_{ - \infty }^\infty {|\tau {|^{2\gamma }}||{{\widehat {\widetilde b}}_m}||_{{L^2}}^2} {\rm d}\tau &\le& C\int_{ - \infty }^\infty {{{1 + |\tau |} \over {1 + |\tau {|^{1 - 2\gamma }}}}} ||{\widehat {\widetilde b}_m}||_{{L^2}}^2{\rm d}\tau\\ &\le & C\int_{ - \infty }^\infty {||{{\widehat {\widetilde b}}_m}||_{{L^2}}^2} {\rm d}\tau + C\int_{ - \infty }^\infty {{{||{{\widehat {\widetilde b}}_m}( \tau )|{|_{{H^1}}}} \over {1 + |\tau {|^{1 - 2\gamma }}}}} {\rm d}\tau . \end{eqnarray} $

根据Parseval等式与引理2.1, (2.19)与(2.20)式右边第一个积分项关于$ m $一致有界.由Schwartz不等式, Parseval等式和引理2.1,可得

$ \begin{eqnarray} && \int_{ - \infty }^\infty {{{||{{\widehat {\widetilde u}}_m}( \tau )|{|_{{H^1}}}} \over {1 + |\tau {|^{1 - 2\gamma }}}}} {\rm d}\tau \le {\bigg( {\int_{ - \infty }^\infty {{{{\rm d}\tau } \over {{{(1 + |\tau {|^{1 - 2\gamma }})}^2}}}} }\bigg )^{{1 \over 2}}}{\bigg( {\int_0^T {||{u_m}(\tau )||_{{H^1}}^2{\rm d}\tau } }\bigg )^{{1 \over 2}}} \le C, \end{eqnarray} $

$ \begin{eqnarray} &&\int_{ - \infty }^\infty {{{||{{\widehat {\widetilde b}}_m}( \tau )|{|_{{H^1}}}} \over {1 + |\tau {|^{1 - 2\gamma }}}}} {\rm d}\tau \le {\bigg( {\int_{ - \infty }^\infty {{{{\rm d}\tau } \over {{{(1 + |\tau {|^{1 - 2\gamma }})}^2}}}} } \bigg)^{{1 \over 2}}}{\bigg( {\int_0^T {||{b_m}(\tau )||_{{H^1}}^2{\rm d}\tau } }\bigg )^{{1 \over 2}}} \le C, \end{eqnarray} $

其中$ 0 < \gamma < {1 \over 4} $.

同样地,当$ 0 < \gamma < {1 \over {2({\beta + 1})}} $,可得

$ \begin{eqnarray} \int_{ - \infty }^\infty {{{||{{\widehat {\widetilde u}}_m}( \tau )|{|_{\beta + 1}}} \over {1 + |\tau {|^{1 - 2\gamma }}}}} {\rm d}\tau & \le &{\bigg( {\int_{ - \infty }^\infty {{{{\rm d}\tau } \over {{{(1 + |\tau {|^{1 - 2\gamma }})}^{{{\beta + 1} \over \beta }}}}}} }\bigg )^{{\beta \over {\beta + 1}}}}{\bigg( {\int_{ - \infty }^\infty {||{{\widehat {\widetilde u}}_m}( \tau )||_{\beta + 1}^{\beta + 1}{\rm d}\tau } } \bigg)^{{1 \over {\beta + 1}}}}\\ &\le &C{\bigg( {\int_{ - \infty }^\infty {||{{\tilde u}_m}( \tau )||_{\beta + 1}^{{{\beta + 1} \over \beta }}{\rm d}\tau } }\bigg )^{{\beta \over {\beta + 1}}}}\\ &\le& C{T^{{{\beta - 1} \over {\beta + 1}}}}{\bigg( {\int_0^T {||{u_m}( \tau )||_{\beta + 1}^{\beta + 1}{\rm d}\tau } }\bigg )^{{1 \over {\beta + 1}}}}. \end{eqnarray} $

由(2.19)–(2.23)式可知

$ \begin{eqnarray} \int_{ - \infty }^\infty {|\tau {|^{2\gamma }}||{{\widehat {\widetilde u}}_m}||_{{L^2}}^2} {\rm d}\tau \le C , \qquad \int_{ - \infty }^\infty {|\tau {|^{2\gamma }}||{{\widehat {\widetilde b}}_m}||_{{L^2}}^2} {\rm d}\tau \le C . \end{eqnarray} $

根据引理2.1,存在着函数$ u({x, t}) $, $ b({x, t}) $使得

$ \begin{equation} \begin{array}{l} u \in {L^\infty }( {0, T;{L^2}( {{{\Bbb R} ^3}} )} ) \cap {L^2}( {0, T;H_0^1( {{{\Bbb R} ^3}} )} ) \cap {L^{\beta + 1}}( {0, T;{L^{\beta + 1}}( {{{\Bbb R} ^3}} )} ), \\ b \in {L^\infty }( {0, T;{L^2}( {{{\Bbb R} ^3}} )} ) \cap {L^2}( {0, T;H_0^1( {{{\Bbb R} ^3}} )} ). \end{array} \end{equation} $

而且存在着$ \left\{ {{u_m}} \right\}_{m = 1}^\infty $的子列(仍用其自身表示),使得$ {{u_m}} $$ * $收敛到$ u \in {L^\infty }({0, T; {L^2}({{{\Bbb R} ^3}})}) $,弱收敛到$ u \in {L^2}({0, T; H_0^1({{{\Bbb R} ^3}})}) $且在$ L^{\beta + 1}({0, T; {L^{\beta + 1}}({{{\Bbb R} ^3}})}) $上有$ u \to u $.存在着$ \left\{ {{b_m}} \right\}_{m = 1}^\infty $的子列(用其自身表示),使$ {{b_m}} $$ * $收敛到$ b \in {L^\infty }({0, T; {L^2}({{{\Bbb R} ^3}})}) $,弱收敛到$ b \in {L^2}({0, T; H_0^1({{{\Bbb R} ^3}})}) $.最后,选择出$ {\Omega _1} \subset {\Omega _2} \subset {\Omega _3} \subset, \cdots $,它们都具有光滑的边界且满足$ \cup _{i = 1}^\infty {\Omega _i} = {{\Bbb R} ^3} $.对任意给定的$ i = 1, 2, \cdots $,令$ {X_0} = H_0^1({{\Omega _i}}) $, $ X = {L^2}({{\Omega _i}}) $,通过(2.24)式以及文献[11]中定理2.2和引理2.1容易得到存在着$ \left\{ {{u_m}} \right\}_{m = 1}^\infty $$ \left\{ {{b_m}} \right\}_{m = 1}^\infty $的子列(仍用它们的本身表示)使得$ {u_m} \to u $(强收敛于$ {L^2}({0, T; {L^2}({{\Omega _i}})}) $), $ {b_m} \to b $(强收敛于$ {L^2}({0, T; {L^2}({{\Omega _i}})}) $).由对角线法则,存在着$ \left\{ {{u_m}} \right\}_{m = 1}^\infty $的子列$ \left\{ {{u_{{m_j}}}} \right\}_{j = 1}^\infty $以及$ \left\{ {{b_m}} \right\}_{m = 1}^\infty $的子列$ \left\{ {{b_{{m_j}}}} \right\}_{j = 1}^\infty $,有$ {{u_{{m_j}}}} $强收敛于$ u \in {L^2}(0, T; {L^2} $$ ({{\Omega _i}})) $以及$ {{b_{{m_j}}}} $强收敛于$ b \in {L^2}({0, T; {L^2}({{\Omega _i}})}) $,其中$ i = 1, 2, \cdots $.因此$ \left\{ {{u_{{m_j}}}} \right\}_{j = 1}^\infty $$ \left\{ {{b_{{m_j}}}} \right\}_{j = 1}^\infty $强收敛到$ {L^2}(0, T; L_{loc}^2({{{\Bbb R} ^3}})) $.这些收敛保证了$ ({u({x, t}), b({x, t})}) $是问题(1.1)的一个弱解.更进一步, (2.25)式是(2.2)式的直接结果, (2.3)式可由引理2.1直接得到.定理2.1证毕.

3 局部强解的存在性和唯一性

本节将证明局部强解的存在性和唯一性.下面先给出强解的定义.

定义3.1  如果$ ({u({x, t}), b({x, t}), p({x, t})}) $是问题(1.1)的一个弱解,并且满足

那么$ ({u({x, t}), b({x, t}), p({x, t})}) $就是问题(1.1)的一个强解.

这里需要说明,类似于Navier-Stokes方程,如果$ ({u({x, t}), b({x, t}), p({x, t})}) $为问题(1.1)的一个强解,那么压力$ {p({x, t})} $能唯一(至多相差一个常数)地被速度场$ {u({x, t})} $和磁场$ {b({x, t})} $确定,详见文献[11].

这一节的主要结论将由下面的定理给出.

定理3.1  假设$ {u_0} \in H_0^1 \cap {L^{\beta + 1}} $, $ {b_0} \in H_0^1 $,则存在着问题(1.1)的强解满足

并且强解具有唯一性.

 强解的存在性依赖于下面给出的这个先验估计.

引理3.1  若$ ({u({x, t}), b({x, t}), p({x, t})}) $是问题(1.1)的一个光滑解,那么

$ \begin{eqnarray} &&\mathop {\sup }\limits_{0 \le t \le T} ( {||\nabla u||_{{L^2}}^2 + {1 \over {\beta + 1}}||u||_{\beta + 1}^{\beta + 1} + ||\nabla b||_{{L^2}}^2} ) + {1 \over 2}\int_0^T {||{u_t}||_{{L^2}}^2} {\rm d}t + {1 \over 2}\int_0^T {||{b_t}||_{{L^2}}^2} {\rm d}t \\ & &+ {3 \over 8}\int_0^T {||\Delta u||_{{L^2}}^2{\rm d}t} + {3 \over 8}\int_0^T {||\Delta b||_{{L^2}}^2{\rm d}t} + \int_0^T {\int_{{{\Bbb R} ^3}} {|u{|^{\beta - 1}}|\nabla u{|^2}{\rm d}x{\rm d}t} } \\ && + {{\beta - 1} \over 4}\int_0^T {\int_{{{\Bbb R} ^3}} {|u{|^{\beta - 3}}|\nabla |u{|^2}{|^2}{\rm d}x{\rm d}t} } \le C, \end{eqnarray} $

其中$ C $$ ||\nabla {u_0}||_{{L^{^2}}}^2 $, $ ||\nabla {b_0}||_{{L^{^2}}}^2 $, $ ||{u_0}||_{\beta + 1}^{\beta + 1} $, $ T $有关.

 将方程组(1.1)中第一个方程乘以$ {u_t} $,第二个方程乘以$ {b_t} $,然后分别在$ {{\Bbb R} ^3} $关于$ x $积分,再相加可得

$ \begin{eqnarray} & &||{u_t}||_{{L^2}}^2 + ||{b_t}||_{{L^2}}^2 + {1 \over 2}{{\rm d}\over {{\rm d}t}}||\nabla u||_{{L^2}}^2 + {1 \over 2}{{\rm d}\over {{\rm d}t}}||\nabla b||_{{L^2}}^2 + {1 \over {\beta + 1}}{{\rm d}\over {{\rm d}t}}||u||_{\beta + 1}^{\beta + 1}\\ & = & \int_{{{\Bbb R} ^3}} {b \cdot \nabla b{u_t}} {\rm d}x - \int_{{{\Bbb R} ^3}} {u \cdot \nabla u{u_t}} {\rm d}x - \int_{{{\Bbb R} ^3}} {u \cdot \nabla b{b_t}} {\rm d}x + \int_{{{\Bbb R} ^3}} {b \cdot \nabla u{b_t}} {\rm d}x\\ &\le & \int_{{{\Bbb R} ^3}} {|b \cdot \nabla b||{u_t}|} {\rm d}x + \int_{{{\Bbb R} ^3}} {|u \cdot \nabla u||{u_t}|} {\rm d}x + \int_{{{\Bbb R} ^3}} {|u \cdot \nabla b||{b_t}} |{\rm d}x + \int_{{{\Bbb R} ^3}} {|b \cdot \nabla u||{b_t}} |{\rm d}x . \end{eqnarray} $

对于(3.2)式不等号右边使用Hölder不等式和Young不等式可得

$ \begin{eqnarray} &&\int_{{{\Bbb R} ^3}} {|b \cdot \nabla b||{u_t}|} {\rm d}x + \int_{{{\Bbb R} ^3}} {|u \cdot \nabla u||{u_t}|} {\rm d}x + \int_{{{\Bbb R} ^3}} {|b \cdot \nabla u||{b_t}} |{\rm d}x + \int_{{{\Bbb R} ^3}} {|u \cdot \nabla b||{b_t}} |{\rm d}x\\ &\le &||u \cdot \nabla u|{|_{{L^2}}}||{u_t}|{|_{{L^2}}} + ||b \cdot \nabla b|{|_{{L^2}}}||{u_t}|{|_{{L^2}}} + ||b \cdot \nabla u|{|_{{L^2}}}||{b_t}|| + ||u \cdot \nabla b|{|_{{L^2}}}||{b_t}|{|_{{L^2}}}\\ &\le& {1 \over 4}||{u_t}||_{{L^2}}^2 + C||u \cdot \nabla u||_{{L^2}}^2 + {1 \over 4}||{u_t}||_{{L^2}}^2 + C||b \cdot \nabla b||_{{L^2}}^2 + {1 \over 4}||{b_t}||_{{L^2}}^2 + C||b \cdot \nabla u||_{{L^2}}^2 \\ &&+ {1 \over 4}||{b_t}||_{{L^2}}^2 + C||u \cdot \nabla b||_{{L^2}}^2\\ &\le & {1 \over 2}||{u_t}||_{{L^2}}^2 + {1 \over 2}||{b_t}||_{{L^2}}^2 + C( {||u \cdot \nabla u||_{{L^2}}^2 + ||b \cdot \nabla b||_{{L^2}}^2 + ||u \cdot \nabla b||_{{L^2}}^2 + ||b \cdot \nabla u||_{{L^2}}^2} )\\ &\le& {1 \over 2}||{u_t}||_{{L^2}}^2 + {1 \over 2}||{b_t}||_{{L^2}}^2 + C( {{I_1} + {I_2} + {I_3} + {I_4}} ). \end{eqnarray} $

对于(3.3)式中的$ {{I_1}} $, $ {{I_2}} $, $ {{I_3}} $, $ {{I_4}} $,使用Hölder不等式, Gagliardo-Nirenberg不等式和Young不等式有

$ \begin{eqnarray} {I_1}& \le& {( {||u|{|_{{L^4}}}||\nabla u|{|_{{L^4}}}} )^2}\\ &\le& C{( {||u||_{{L^2}}^{{1 \over 4}}||\nabla u||_{{L^2}}^{{3 \over 4}}||\nabla u||_{{L^2}}^{{1 \over 4}}||\Delta u||_{{L^2}}^{{3 \over 4}}} )^2}\\ &\le& C||u||_{{L^2}}^{{1 \over 2}}||\nabla u||_{{L^2}}^2||\Delta u||_{{L^2}}^{{3 \over 2}}\\ &\le & C||u||_{{L^2}}^2||\nabla u||_{{L^2}}^8 + {1 \over 8}||\Delta u||_{{L^2}}^2\\ &\le& C||\nabla u||_{{L^2}}^8 + {1 \over 8}||\Delta u||_{{L^2}}^2. \end{eqnarray} $

$ \begin{eqnarray} {I_3} &\le& {( {||u|{|_{{L^4}}}||\nabla b|{|_{{L^4}}}} )^2}\\ &\le& C{( {||u||_{{L^2}}^{{1 \over 4}}||\nabla u||_{{L^2}}^{{3 \over 4}}||\nabla b||_{{L^2}}^{{1 \over 4}}||\Delta b||_{{L^2}}^{{3 \over 4}}} )^2}\\ &\le & C||u||_{{L^2}}^{{1 \over 2}}||\nabla u||_{{L^2}}^{{3 \over 2}}||\nabla b||_{{L^2}}^{{1 \over 2}}||\Delta b||_{{L^2}}^{{3 \over 2}}\\ &\le& C||u||_{{L^2}}^2||\nabla u||_{{L^2}}^6||\nabla b||_{{L^2}}^2 + {1 \over 8}||\Delta b||_{{L^2}}^2\\ &\le& C||\nabla u||_{{L^2}}^8 + C||\nabla b||_{{L^2}}^8 + {1 \over 8}||\Delta b||_{{L^2}}^2. \end{eqnarray} $

类似于(3.4)和(3.5)式,可得

$ \begin{equation} {I_2} \le C||\nabla b||_{{L^2}}^8 + {1 \over 8}||\Delta b||_{{L^2}}^2, \end{equation} $

$ \begin{equation} {I_4} \le C||\nabla b||_{{L^2}}^8 + C||\nabla u||_{{L^2}}^8 + {1 \over 8}||\Delta u||_{{L^2}}^2. \end{equation} $

由(3.2)–(3.7)式可得

$ \begin{eqnarray} & &{1 \over 2} ||{u_t}||_{{L^2}}^2 + {1 \over 2} ||{b_t}||_{{L^2}}^2 + {1 \over 2}{{\rm d}\over {{\rm d}t}}||\nabla u||_{{L^2}}^2 + {1 \over 2}{{\rm d}\over {{\rm d}t}}||\nabla b||_{{L^2}}^2 + {1 \over {\beta + 1}}{{\rm d}\over {{\rm d}t}}||u||_{\beta + 1}^{\beta + 1}\\ &\le& C||\nabla u||_{{L^2}}^8 + C||\nabla b||_{{L^2}}^8 + {1 \over 4}||\Delta u||_{{L^2}}^2 + {1 \over 4}||\Delta b||_{{L^2}}^2. \end{eqnarray} $

再将方程组(1.1)中第一个方程乘以$ - \Delta u $,第二个方程乘以$ - \Delta b $,然后在$ {{\mathbb R}^3} $上关于$ x $积分再相加可得

$ \begin{eqnarray} & &{1 \over 2}{{\rm d}\over {{\rm d}t}}||\nabla u||_{{L^2}}^2 + {1 \over 2}{{\rm d}\over {{\rm d}t}}||\nabla b||_{{L^2}}^2 + ||\Delta u||_{{L^2}}^2 + ||\Delta b||_{{L^2}}^2 + \int_{{{\Bbb R} ^3}} {|u{|^{\beta - 1}}|\nabla u{|^2}} {\rm d}x \\ &&+ {{\beta - 1} \over 4}\int_{{{\Bbb R} ^3}} {|u{|^{\beta - 3}}|\nabla |u{|^2}} {|^2}{\rm d}x\\ & = & \int_{{{\Bbb R} ^3}} {u \cdot \nabla u\Delta u} {\rm d}x - \int_{{{\Bbb R} ^3}} {b \cdot \nabla b\Delta u} {\rm d}x + \int_{{{\Bbb R} ^3}} {u \cdot \nabla b\Delta b} {\rm d}x - \int_{{{\Bbb R} ^3}} {b \cdot \nabla b\Delta b{\rm d}x}\\ &\le& \int_{{{\Bbb R} ^3}} {|u \cdot } \nabla u||\Delta u|{\rm d}x + \int_{{{\Bbb R} ^3}} {|b \cdot \nabla b||\Delta u|} {\rm d}x + \int_{{{\Bbb R} ^3}} {|u \cdot \nabla b||\Delta b|} {\rm d}x + \int_{{{\Bbb R} ^3}} {|b \cdot \nabla u||\Delta b|} {\rm d}x. \end{eqnarray} $

对于(3.9)式使用Hölder不等式和Young不等式,类似于(3.3)式,可得

$ \begin{eqnarray} &&\int_{{{\Bbb R} ^3}} {|u \cdot } \nabla u||\Delta u|{\rm d}x + \int_{{{\Bbb R} ^3}} {|b \cdot \nabla b||\Delta u|} {\rm d}x + \int_{{{\Bbb R} ^3}} {|u \cdot \nabla b||\Delta b|} {\rm d}x + \int_{{{\Bbb R} ^3}} {|b \cdot \nabla u||\Delta b|} {\rm d}x\\ &\le& {2 \over 8}||\Delta u||_{{L^2}}^2 + {2 \over 8}||\Delta b||_{{L^2}}^2 + C( {||u \cdot \nabla u||_{{L^2}}^2 + ||u \cdot \nabla b||_{{L^2}}^2 + ||b \cdot \nabla b||_{{L^2}}^2 + ||b \cdot \nabla u||_{{L^2}}^2} ). \qquad \end{eqnarray} $

对于(3.10)式使用Hölder不等式, Gagliardo-Nirenberg不等式和Young不等式.类似于(3.4)–(3.7)式,易得

$ \begin{eqnarray} &&\int_{{{\Bbb R} ^3}} {|u \cdot } \nabla u||\Delta u|{\rm d}x + \int_{{{\Bbb R} ^3}} {|b \cdot \nabla b||\Delta u|} {\rm d}x + \int_{{{\Bbb R} ^3}} {|u \cdot \nabla b||\Delta b|} {\rm d}x + \int_{{{\Bbb R} ^3}} {|b \cdot \nabla u||\Delta b|} {\rm d}x\\ &\le& C( {||\nabla u||_{{L^2}}^8 + ||\nabla b||_{{L^2}}^8} ) + {3 \over 8}||\Delta u||_{{L^2}}^2 + {3 \over 8}||\Delta b||_{{L^2}}^2. \end{eqnarray} $

最后用(3.8)式加上(3.11)式得

$ \begin{eqnarray} &&{1 \over 2} ||{u_t}||_{{L^2}}^2 + {1 \over 2} ||{b_t}||_{{L^2}}^2 + {{\rm d}\over {{\rm d}t}}||\nabla u||_{{L^2}}^2 + {{\rm d}\over {{\rm d}t}}||\nabla b||_{{L^2}}^2 + {1 \over {\beta + 1}}{{\rm d}\over {{\rm d}t}}||u||_{\beta + 1}^{\beta + 1}\\ & &{\rm{ + }}{3 \over 8}||\Delta u||_{{L^2}}^2{\rm{ + }}{3 \over 8}||\Delta {\rm{b}}||_{{L^2}}^2+ \int_{{{\Bbb R} ^3}} {|u{|^{\beta - 1}}|\nabla u{|^2}} {\rm d}x + {{\beta - 1} \over 4}\int_{{{\Bbb R} ^3}} {|u{|^{\beta - 3}}|\nabla |u{|^2}} {|^2}{\rm d}x \\ &\le& C( {||\nabla u||_{{L^2}}^8 + ||\nabla b||_{{L^2}}^8} )\le C{( {||\nabla u||_{{L^2}}^2 + ||\nabla b||_{{L^2}}^2 + ||u||_{\beta + 1}^{\beta + 1}} )^4}. \end{eqnarray} $

由(3.12)式可得

$ \begin{eqnarray} {{\rm d}\over {{\rm d}t}}I( t ) \le C{( {I( t )} )^4}, \qquad I( t ) \le {1 \over {{{( {I{{( 0 )}^{ - 3}} - Ct} )}^{{1 \over 3}}}}}, \end{eqnarray} $

将(3.13)式带入(3.12)式,并关于$ t $$ \left[{0, T} \right] $上积分可得

$ \begin{eqnarray} &&{1 \over 2} \int_0^T {||{u_t}||_{{L^2}}^2{\rm d}t} + {1 \over 2} \int_0^T {||{b_t}||_{{L^2}}^2} {\rm d}t + \mathop {\sup }\limits_{0 \le t \le T} ( {||\nabla u||_{{L^2}}^2 + ||\nabla b||_{{L^2}}^2 + {1 \over {\beta + 1}}||u||_{\beta + 1}^{\beta + 1}} )\\ &&{\rm{ + }}{3 \over 8}\int_0^T {||\Delta u||_{{L^2}}^2} {\rm{{\rm d}t}}{\rm{ + }}{3 \over 8}\int_0^T {||\Delta b||_{{L^2}}^2} {\rm{{\rm d}t}} + \int_0^T {\int_{{{\Bbb R} ^3}} {|u{|^{\beta - 1}}|\nabla u{|^2}} {\rm d}x} {\rm d}t\\ && + {{\beta - 1} \over 4}\int_0^T {\int_{{{\Bbb R} ^3}} {|u{|^{\beta - 3}}|\nabla |u{|^2}} {|^2}{\rm d}x} {\rm d}t \le C( T ). \end{eqnarray} $

引理3.1得证.

现在证明定理3.1中强解的唯一性,假设在相同的初始条件下,同时存在着两个问题(1.1)的强解满足

$ \begin{equation} ( {{u_t}, \phi } ) + \int_{{{\Bbb R} ^3}} {( {u \cdot \nabla } )} u\phi {\rm d}x + \int_{{{\Bbb R} ^3}} {\nabla u:\nabla \phi } {\rm d}x + \int_{{{\Bbb R} ^3}} {|u{|^{\beta - 1}}u\phi } {\rm d}x = \int_{{{\Bbb R} ^3}} {( {b \cdot \nabla } )b} \phi {\rm d}x, \end{equation} $

$ \begin{equation} ( {{{\rm{b}}_t}, \phi } ) + \int_{{{\Bbb R} ^3}} {( {u \cdot \nabla } )} {\rm{b}}\phi {\rm d}x + \int_{{{\Bbb R} ^3}} {\nabla {\rm{b}}:\nabla \phi } {\rm d}x = \int_{{{\Bbb R} ^3}} {( {b \cdot \nabla } ){\rm{u}}} \phi {\rm d}x, \end{equation} $

$ \begin{equation} ( {{{\overline u }_t}, \phi } ) + \int_{{{\Bbb R} ^3}} {( {\overline u \cdot \nabla } )} \overline u \phi {\rm d}x + \int_{{{\Bbb R} ^3}} {\nabla \overline u :\nabla \phi } {\rm d}x + \int_{{{\mathbb R}^3}} {|\overline u {|^{\beta - 1}}\overline u \phi } {\rm d}x = \int_{{{\Bbb R} ^3}} {( {\overline {\rm{b}} \cdot \nabla } )\overline b } \phi {\rm d}x, \end{equation} $

$ \begin{equation} ( {{{\overline {\rm{b}} }_t}, \phi } ) + \int_{{{\Bbb R} ^3}} {( {\overline u \cdot \nabla } )} \overline {\rm{b}} \phi {\rm d}x + \int_{{{\Bbb R} ^3}} {\nabla \overline {\rm{b}} :\nabla \phi } {\rm d}x = \int_{{{\Bbb R} ^3}} {( {\overline {\rm{b}} \cdot \nabla } )\overline u } \phi {\rm d}x, \end{equation} $

其中$ \phi \in C_0^\infty ({\left[{0, T} \right] \times {{\mathbb R}^3}}) $,由于$ C_0^\infty $$ {L^2} $$ H_0^1 $中稠密,所以当$ \phi \in {L^2}({0, T; H_0^1({{{\mathbb R}^3}})}) $, (3.15)式到(3.18)式仍然成立.

由(3.15)式减去(3.17)式,再令$ \phi = u - \overline u $可得

$ \begin{eqnarray} & &{1 \over 2}{{\rm d}\over {{\rm d}t}}||u - \overline u ||_{{L^2}}^2 + ||\nabla ( {u - \overline u } )||_{{L^2}}^2 + |||u{|^{{{\beta - 1} \over 2}}}|u - \overline u |||_{{L^2}}^2 + \int_{{{\mathbb R}^3}} {( {|u{|^{\beta - 1}}u - |\overline u {|^{\beta - 1}}\overline u } )} ( {u - \overline u } ){\rm d}x\\ &\le& \int_{{{\Bbb R} ^3}} {|u - \overline u {|^2}|\nabla } \overline u |{\rm d}x + \int_{{{\Bbb R} ^3}} {|b||\nabla ( {b - \overline {\rm{b}} } )||u - } \overline u |{\rm d}x + \int_{{{\Bbb R} ^3}} {|b - \overline {\rm{b}} ||\nabla \overline {\rm{b}} ||u - } \overline u |{\rm d}x. \end{eqnarray} $

由(3.16)式减去(3.18)式,再令$ \phi = b - \overline b $可得

$ \begin{eqnarray} & &{1 \over 2}{{\rm d}\over {{\rm d}t}}||b - \overline b ||_{{L^2}}^2 + ||\nabla ( {b - \overline b } )||_{{L^2}}^2\\ &\le & \int_{{{\Bbb R} ^3}} {|u - \overline u ||\nabla \overline {\rm{b}} ||b - } \overline b |{\rm d}x + \int_{{{\Bbb R} ^3}} {|b||\nabla ( {u - \overline u } )||b - } \overline b |{\rm d}x + \int_{{{\Bbb R} ^3}} {|b - \overline b {|^2}|\nabla } \overline u |{\rm d}x. \end{eqnarray} $

将(3.19)式加上(3.20)式可得

$ \begin{eqnarray} & &{1 \over 2}{{\rm d}\over {{\rm d}t}}||u - \overline u ||_{{L^2}}^2 + {1 \over 2}{{\rm d}\over {{\rm d}t}}||b - \overline b ||_{{L^2}}^2 + ||\nabla ( {u - \overline u } )||_{{L^2}}^2 + ||\nabla ( {b - \overline b } )||_{{L^2}}^2 + |||u{|^{{{\beta - 1} \over 2}}}|u - \overline u |||_{{L^2}}^2\\ & &+ \int_{{{\Bbb R} ^3}} {( {|u{|^{\beta - 1}}u - |\overline u {|^{\beta - 1}}\overline u } )} ( {u - \overline u } ){\rm d}x\\ &\le & \int_{{{\Bbb R} ^3}} {|u - \overline u {|^2}|\nabla } \overline u |{\rm d}x + \int_{{{\Bbb R} ^3}} {|b - \overline b {|^2}|\nabla } \overline u |{\rm d}x + 2\int_{{{\Bbb R} ^3}} {|b - \overline {\rm{b}} ||\nabla \overline {\rm{b}} ||u - } \overline u |{\rm d}x\\ &\le& {J_1} + {J_2} + 2{J_3} + {J_4}, \end{eqnarray} $

其中使用了结论:对于任意$ u \in H_0^1 $,任意$ v \in {H^1} $,有$ ({({u \cdot \nabla })v, v}) = 0 $.

由文献[8]可得

对于$ {J_1} $, $ {J_2} $,使用Hölder不等式, Gagliardo-Nirenberg不等式和Young不等式可得

$ \begin{eqnarray} {J_1}& \le &||u - \overline u ||_{{L^4}}^2||\nabla \overline u |{|_{{L^2}}}\\ &\le& C( {||\nabla ( {u - \overline u } )||_{{L^2}}^{{3 \over 2}}||u - \overline u ||_{{L^2}}^{{1 \over 2}}} )||\nabla \overline u |{|_{{L^2}}}\\ &\le &\varepsilon ||\nabla ( {u - \overline u } )||_{{L^2}}^2 + C||u - \overline u ||_{{L^2}}^2||\nabla \overline u ||_{{L^2}}^4, \end{eqnarray} $

$ \begin{eqnarray} {J_2}& \le &||b - \overline b ||_{{L^4}}^2||\nabla \overline u |{|_{{L^2}}}\\ &\le& C( {||\nabla ( {b - \overline b } )||_{{L^2}}^{{3 \over 2}}||b - \overline b ||_{{L^2}}^{{1 \over 2}}} )||\nabla \overline u |{|_{{L^2}}}\\ &\le& \varepsilon ||\nabla ( {b - \overline b } )||_{{L^2}}^2 + C||b - \overline b ||_{{L^2}}^2||\nabla \overline u ||_{{L^2}}^4, \end{eqnarray} $

对于$ {J_3} $,使用Hölder不等式, Gagliardo-Nirenberg不等式和Young不等式可得

$ \begin{eqnarray} {J_3} &\le& ||b - \overline b |{|_{{L^4}}}||\nabla \overline b |{|_{{L^2}}}||u - \overline u |{|_{{L^4}}}\\ &\le & C||\nabla ( {b - \overline b } )||_{{L^2}}^{{3 \over 4}}||\nabla ( {u - \overline u } )||_{{L^2}}^{{3 \over 4}}||b - \overline b ||_{{L^2}}^{{1 \over 4}}||u - \overline u ||_{{L^2}}^{{1 \over 4}}\\ &\le& \varepsilon ||\nabla ( {b - \overline b } )|{|_{{L^2}}}||\nabla ( {u - \overline u } )|{|_{{L^2}}} + C||b - \overline b |{|_{{L^2}}}||u - \overline u |{|_{{L^2}}}\\ &\le& {\varepsilon \over 2}||\nabla ( {b - \overline b } )||_{{L^2}}^2 + {\varepsilon \over 2}||\nabla ( {u - \overline u } )||_{{L^2}}^2 + C||b - \overline b ||_{{L^2}}^2 + C||u - \overline u ||_{{L^2}}^2. \end{eqnarray} $

$ \varepsilon = {1 \over 5} $,将(3.22)–(3.24)式代入到(3.21)式中可以得到

$ \begin{eqnarray} &&{1 \over 2}{{\rm d}\over {{\rm d}t}}||u - \overline u ||_{{L^2}}^2 + {1 \over 2}{{\rm d}\over {{\rm d}t}}||b - \overline b ||_{{L^2}}^2 + {7 \over {10}}||\nabla ( {u - \overline u } )||_{{L^2}}^2 + {7 \over {10}}||\nabla ( {b - \overline b } )|| + |||u{|^{{{\beta - 1} \over 2}}}|u - \overline u |||_{{L^2}}^2\\ & &+ \int_{{{\mathbb R}^3}} {( {|u{|^{\beta - 1}}u - |\overline u {|^{\beta - 1}}\overline u } )} ( {u - \overline u } ){\rm d}x \le C||u - \overline u ||_{{L^2}}^2 + C||b - \overline b || _{{L^2}}^2. \end{eqnarray} $

对(3.25)式使用Gronwall不等式,易得$ u = \overline u $, $ b = \overline b $$ ({x, t}) \in {{\mathbb R}^3} \times \left[{0, T} \right] $上几乎处处成立.定理3.1证毕.

参考文献

李大潜, 秦铁虎. 物理学与偏微分方程. 北京: 高等教育出版社, 1997

[本文引用: 1]

Li D Q , Qin T H . Physics and Partial Differential Equations. Beijing: Higher Education Press, 1997

[本文引用: 1]

Cabannes H , Sfeir A A . Theoretical Magnetofluiddynamics. New York: Academic Press, 1970

Lifshitz E M , Pitaevskii L P . Electrodynamics of Continuous Media. New York: Pergamon Press, 1984

[本文引用: 1]

Duvaut G , Lions J L .

Inéquations en thermoélasticité et magnétohydrodynamique

Arch Ration Mech Anal, 1972, 46: 241- 279

DOI:10.1007/BF00250512      [本文引用: 1]

Sermange M , Temam R .

Some mathematical questions related to the MHD equations

Comm Pure Appl Math, 1983, 36 (5): 635- 664

DOI:10.1002/(ISSN)1097-0312      [本文引用: 1]

Wu J H. The 2D magnetohydrodynamic equations with partial or fractional dissipation//Yang L, Yau S-T. Morningside Lectures in Mathematics. Somerville, MA: International Press, 2017

[本文引用: 1]

Hsiao L . Quasilinear Hyperbolic Systems and Dissipative Mechanisms. Singapore: World Scientific, 1997

[本文引用: 1]

Cai X , Jiu Q .

Weak and strong solutions for the incompressible Navier-Stokes equations with damping

Journal of Mathematical Analysis and Applications, 2008, 343 (2): 799- 809

DOI:10.1016/j.jmaa.2008.01.041      [本文引用: 5]

Zhang Z , Wu X , Lu M .

On the uniqueness of strong solution to the incompressible Navier-Stokes equations with damping

Journal of Mathematical Analysis and Applications, 2011, 377 (1): 414- 419

DOI:10.1016/j.jmaa.2010.11.019      [本文引用: 2]

Zhou Y .

Regularity and uniqueness for the 3D incompressible Navier-Stokes equations with damping

Applied Mathematics Letters, 2012, 25 (11): 1822- 1825

DOI:10.1016/j.aml.2012.02.029      [本文引用: 2]

Temam R . Navier-Stokes Equations, Theory and Numerical Analysis. Amsterdam: North-Holland, 1977

[本文引用: 3]

/