数学物理学报, 2019, 39(3): 475-483 doi:

论文

临界情形下Schrödinger-Maxwell方程的基态解

方立婉,1, 黄文念,2, 汪敏庆,2

Ground-State Solutions for Schrödinger-Maxwell Equations in the Critical Growth

Fang Liwan,1, Huang Wennian,2, Wang Minqing,2

收稿日期: 2017-04-28  

基金资助: 广西师范大学科学研究基金.  2014ZD001
广西自然科学基金.  2015GXNSFBA139018
2017广西研究生教育创新计划项目.  XYCZ2017074

Received: 2017-04-28  

Fund supported: the Science Research Fund of Guangxi Normal University.  2014ZD001
the Natural Science Foundation of Guangxi.  2015GXNSFBA139018
the Postgraduate Education Innovation Plan Project of Guangxi in 2017.  XYCZ2017074

作者简介 About authors

方立婉,fangliwan1992@163.com , E-mail:fangliwan1992@163.com

黄文念,csuhuangwn@163.com , E-mail:csuhuangwn@163.com

汪敏庆,hgncwangmq@126.com , E-mail:hgncwangmq@126.com

摘要

该文主要研究下面的Schrödinger-Maxwell方程

基态解的存在性,其中β是正常数.当VK以及bx)满足某些假设条件时,运用变分法和临界点理论,可以证明当α < 0和p∈(3,4)时,上面的方程至少存在一个基态解.

关键词: Schrödinger-Maxwell方程 ; 临界点理论 ; 临界情形 ; 基态解 ; Nehari流形

Abstract

In this paper, we study the existence of the ground state solutions for the following Schrödinger-Maxwell equations

where β is a positive constant. Under some assumptions on V, K and b(x), by using the variational method and critical point theorem, we prove that such a class of equations has at least a ground state solution for α < 0 and p ∈ (3, 4).

Keywords: Schrödinger-Maxwell equations ; Critical point theorem ; Critical growth ; Ground state solution ; Nehari manifold

PDF (300KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

方立婉, 黄文念, 汪敏庆. 临界情形下Schrödinger-Maxwell方程的基态解. 数学物理学报[J], 2019, 39(3): 475-483 doi:

Fang Liwan, Huang Wennian, Wang Minqing. Ground-State Solutions for Schrödinger-Maxwell Equations in the Critical Growth. Acta Mathematica Scientia[J], 2019, 39(3): 475-483 doi:

1 引言

在本文中,我们讨论下面系统基态解的存在性

$\begin{equation} \left\{\begin{array}{ll} -\triangle u+V(x)u-(K(x)+\alpha)\phi u=\beta|u|^{4}u+b(x)|u|^{p-1}u, &(x, u)\in(\mathbb{R}^{3}, \mathbb{R}), \\ \triangle\phi=(K(x)+\alpha)u^{2}, &(x, u)\in(\mathbb{R}^{3}, \mathbb{R}), \end{array} \right.\end{equation}$

其中$\beta$是正常数, $\alpha<0$$p\in(3, 4)$.对于$V, K(x)$$b(x)$,我们作如下假设:

$(V_{1})$$V\in C(\mathbb{R}^{3}, \mathbb{R}), $$\inf\limits_{x\in\mathbb{R}^{3}}V(x)>0$,对任一$M>0, meas\{x\in\mathbb{R}^{3}|V(x)\leq M\}<\infty.$

$(V_{2})$$V(\infty)=\lim\limits_{|x|\rightarrow\infty}\inf V(x)\geq V(x), $$V(x)\not\equiv V(\infty)$.

(K) $K(x)\in L^{\infty}(\mathbb{R}^{3}, \mathbb{R}), $$K(x)\leq0, x\in\mathbb{R}^{3}$.

(B) $b(x):\mathbb{R}^{3}\rightarrow\mathbb{R}^{+}$,且$b(x)\in L^{p+2}(\mathbb{R}^{3})$.

$K(x)\equiv0, x\in\mathbb{R}^{3}$, Zhang在文献[1]中研究如下系统

$\begin{equation} \left\{\begin{array}{ll} -\triangle u+V(x)u+\mu\phi u=f(u), & (x, u)\in(\mathbb{R}^{3}, \mathbb{R}), \\ -\triangle\phi=\mu u^{2}, & (x, u)\in(\mathbb{R}^{3}, \mathbb{R}), \end{array} \right.\end{equation}$

其中$V, \mu>0, f(u)$临界增长且为奇函数,运用变分形式山路定理,得到了系统(1.2)的正径向解和基态解的存在性.而Liu和Guo在文献[2]中运用变分法研究下列临界点情形的Schrödinger-Maxwell系统

$\begin{equation} \left\{\begin{array}{ll} -\triangle u+V(x)u+\lambda\phi u=\mu|u|^{q-1}u+|u|^{4}u, & (x, u)\in(\mathbb{R}^{3}, \mathbb{R}), \\ -\triangle\phi=u^{2}, &(x, u)\in(\mathbb{R}^{3}, \mathbb{R}), \end{array} \right.\end{equation}$

其中$\mu$是一个正参数.在$V$的适当假设下,运用变分形式的山路定理,当$q\in(3, 5)$$q\in(2, 3], $$\mu$足够大的时候,对任一$\lambda>0$,系统(1.3)存在基态解$(u, \phi_{u})\in H^{1}(\mathbb{R}^{3})\times D^{1, 2}(\mathbb{R}^{3}).$

$\alpha=0$时, Yang和Han在文献[3]中研究如下系统

$\begin{equation} \left\{\begin{array}{ll} -\triangle u+V(x)u+K(x)\phi u=f(x, u), & (x, u)\in(\mathbb{R}^{3}, \mathbb{R}), \\ -\triangle\phi=K(x)u^{2}, &(x, u)\in(\mathbb{R}^{3}, \mathbb{R}), \end{array} \right.\end{equation}$

其中$V>0, K(x)\geq0$.存在$a_{2}>0, p\in(4, 2^{*})$,使得$|f(x, u)|\leq a_{2}(1+|u|^{p-1})$,以及$\lim\limits_{|u|\rightarrow0}\frac{f(x, u)}{u}=0$, $\lim\limits_{|u|\rightarrow\infty}\frac{f(x, u)}{|u|^{4}}=+\infty$,当$u>0$时, $\frac{f(x, u)}{u^{3}}$递增, $u<0$时, $\frac{f(x, u)}{u^{3}}$递减,且存在$\gamma>0$,使得$F(x, u)\geq-\gamma u^{4}(F(x, u)=\int^{u}_{0}f(x, s){\rm d}s$.运用山路定理和喷泉定理可得系统(1.4)在$f(x, u)$关于$u$为奇函数的条件下平凡解和高能解的存在性和多重性.

自从系统(1.1)在文献[5]中提出来以后,就有很多学者研究其解的存在性和多重性,而更多的结论是关于非线性项只有一项,而且是次临界情形的,可详见文献[5-12].本文的主要工作是运用山路定理研究临界情形下,具有两项非线性项的系统(1.1)基态解的存在性.

下面是本文的主要结论:

定理1.1  若$(V_{1}), (V_{2}), $ (K)以及(B)成立, $p\in(3, 4)$,且$\beta>0$,则对每个$\alpha<0, $系统(1.1)至少存在一个基态解.

注1.1  定理1.1是扩展[1-3]的结论.相对于系统(1.2), (1.3)和(1.4),系统(1.1)所满足的条件较复杂,这使得证明基态解的存在性时较困难.本文研究的系统与系统(1.2), (1.3)和(1.4)比较,创新点是同时满足以下两点:

a) Scrödinger-Maxwell方程有两个参量$K(x)$$\alpha$,且都小于0.

b)非线性项是非自治的,含有两项,且其中一项临界增长.

下面介绍本文将用到的一些记号.

记Hilbert空间$H^{1}(\mathbb{R}^{3})$的范数如下:

以及范数空间$D^{1, 2}(\mathbb{R}^{3})$的范数如下:

定义

$E$上赋予內积及由该內积导出的范数为

$(V_{1})$知,下面的嵌入是紧嵌入:

由变分法知,系统(1.1)对应的泛函为$I(u, \phi):E\times D^{1, 2}(\mathbb{R}^{3})\rightarrow\mathbb{R}$,

运用Lax-Milgram定理[13],对任一$u\in H^{1}(\mathbb{R}^{3})$,存在唯一的$\phi_{u}\in D^{1, 2}(\mathbb{R}^{3})$[12],使得

$\begin{equation}\Delta\phi_{u}=(K(x)+\alpha)u^{2}.\end{equation}$

特别地, $\Delta\phi_{u}$如下表示

$(1.5)$式,有

从而

显然, $\Phi(u)$$C^{1}$ -泛函,导数如下:

相应的Nehari流形如下:

2 定理1.1的证明

引理2.1[14]  对于任一$u\in H^{1}(\mathbb{R}^{3}), $下面的命题成立:

(ⅰ) $\phi_{u}\geq0.$

(ⅱ) $\|\phi_{u}\|_{D^{1, 2}}\leq C\|u\|^{2}_{\frac{12}{5}}\leq C\|u\|^{2}.$

(ⅲ)若$u_{n}\rightharpoonup u, $$\phi_{u_{n}}\rightharpoonup\phi_{u}.$

引理2.2[16]$\Phi$是一个Banach空间中的$C^{1}$ -泛函,存在0的邻域$\Omega\subset E$以及常数$\rho$,使得

以及存在$v\not\in\Omega$,使得

其中

则存在序列$\{u_{n}\}\subset E$使得

$\begin{equation}\Phi(u_{n})\rightarrow c, \ \ \Phi'(u_{n})\rightarrow 0.\end{equation}$

显然, $E_{0}\neq\emptyset$.对任一$u\in E_{0}$,记

引理2.3  假设$(V_{1}), (V_{2}), $ (K)和(B)成立,则对$\forall u\in E, $存在常数$\rho, r>0, $$\|u\|=r$时,有$\Phi(u)\geq\rho>0.$

  对任一$u\in E$,由$\alpha<0, $ (K), (B),有

$\Phi(u)>0.$其中$\|u\|=r, 0<r<\min\left\{1, \sqrt{\frac{-3C+3\sqrt{C^2+\frac{\beta}{3}}}{\beta}}\right\}, p\in(3, 4)$.

引理2.4  若$(V_{1}), (V_{2}), $ (K)和(B)成立,则对任一$e\in E_{0}$.存在$r>0$ (如引理2.3定义),使得

  由(B)和Hölder不等式,有

则对任一$e\in E_{0}, t>0$,有

因为$\alpha<0, p\in(3, 4)$,所以由(K),得

$v=te$.证毕.

引理2.5  若$(V_{1}), (V_{2}), $ (K)和(B)成立,则引理2.2的结论成立.

  显然$\Phi(0)=0. $由引理2.3和引理2.4, $\Phi$满足引理2.2的条件,故存在序列$\{u_{n}\}\subset E, $使得$(2.1)$式成立.

下面说明$\Phi$$(PS)_{c}$序列有界.

引理2.6  若$(V_{1}), (V_{2}), $ (K)和(B)成立,则任一满足(2.1)式的$\{u_{n}\}\subset E$有界.

  任取$\{u_{n}\}$满足(2.1)式,则$-\langle \Phi'(u_{n}), u_{n}\rangle\leq o(1)\|u_{n}\|, $且存在$M>0, $使得$|\Phi(u_{n})|\leq M$.由(K)和(B),有

其中, $\alpha<0, \beta>0, p\in(3, 4)$.$\{u_{n}\}$有界.

引理2.7  若$(V_{1}), (V_{2}), $ (K)和(B)成立,则$\{u_{n}\}$的子列$\{u^{*}_{n}\}$强收敛,即存在$u^{*}\in E$使得

更进一步地,有

  根据引理2.6可知,满足(2.1)式的$\{u_{n}\}$有界,即$\|u_{n}\|<\infty$.根据$E$的自反性,设$\{u_{n}\}$的子列$\{u^{*}_{n}\}$满足

$\begin{equation}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ u^{*}_{n}\rightharpoonup u^{*},\ \ \ u^{*} \in E.\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ u^{*}_{n}\rightarrow u^{*},\ \ \ u^{*} \in L^{t}(\mathbb{R}^{3}),\ \ t\in(2,6).\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ u^{*}_{n}\rightarrow u^{*},\ \ \ {\it a.e.}\ \ u^{*} \in \mathbb{R}^{3}.\end{equation}$

不难验证$\Phi'(u^{*})=0.$由引理2.1的(ⅱ)和(ⅲ),得

因为$\|u^{*}_{n}\|<\infty$,由Hölder不等式,有

从而对任一$w\in E, $我们有

联立(2.2)式以及紧性原理[15],有

另一方面,

由(2.2)式,我们有

$v^{*}_{n}=u^{*}_{n}-u^{*}$.根据上面的讨论和Brezi-Lieb引理[16],有

$\begin{equation}o(1)=\langle\Phi'(u^{*}_{n}),u^{*}_{n}\rangle-\langle\Phi'(u^{*}),u^{*}\rangle=\|v^{*}_{n}\|^{2}-\beta\int_{\mathbb{R}^{3}}(v^{*}_{n})^{6}{\rm d}x.\end{equation}$

由引理2.1,有

$S=\inf\limits_{u_{n}\in D^{1, 2}\setminus\{0\}}\frac{\|\nabla u_{n}\|^{2}}{\|u_{n}\|^{2}_{6}}.$类似文献[1]的讨论,对任一$\epsilon, r>0$,定义

其中, $0\leq\psi(x)\leq1, $且在$B_{r}(0)$$ \psi(x)=1$.由Aubin定理知, $S$可由$\frac{\epsilon^{\frac{1}{4}}}{(\epsilon+|x|^{2})^{\frac{1}{2}}}$获得.由估计,我们有

$t_{0}=\big(\frac{\|u_{\epsilon}\|^{2}}{\beta\int_{\mathbb{R}^{3}}u^{6}_{\epsilon}{\rm d}x}\big)^{\frac{1}{2}}$时, $y(t)$取到最大值$y(t_{0})=\frac{1}{3}\big(\frac{\|u_{\epsilon}\|^{2}}{(\beta\int_{\mathbb{R}^{3}}u^{6}_{\epsilon}{\rm d}x)^{\frac{1}{2}}}\big)^{\frac{3}{2}}=\big(\frac{S^{3}}{9\beta}\big)^{\frac{1}{2}}$.

由(2.1)式,知$c<(\frac{S^{3}}{9\beta})^{\frac{1}{2}}$.因为$\Phi'(u^{*})=0$,根据引理2.6的讨论,有

$\|v^{*}_{n}\|^{2}\rightarrow l\geq0.$$(2.3)$式,我们有

$l>0$,由Sobolev嵌入定理,有$S\leq\frac{\|v^{*}_{n}\|^{2}}{(\int_{\mathbb{R}^{3}}|v^{*}_{n}|^{6}{\rm d}x)^{\frac{1}{3}}}.$从而

矛盾.从而$l=0$,即$\|v^{*}_{n}\|\rightarrow0$,亦即$u^{*}_{n}\rightarrow u^{*}, u^{*}\in E, \Phi(u^{*})=c.$证明完毕.

定理1.1的证明  首先说明$\Phi$存在临界点.由引理2.6知, $\Phi$有有界的$(PS)_{c}$序列.由引理2.7知存在$u^{*}\in E, u^{*}\neq0.$使得

即存在$\Phi$的临界点$u^{*}\neq0.$

下面说明系统(1.1)存在基态解.

根据引理2.7的讨论,我们有

$\{v_{n}\}$$\Phi$的非平凡临界点序列,满足

因为$\Phi(v_{n})$有界,故由引理2.6的讨论知, $\{v_{n}\}$$E$上有界.因此$\{v_{n}\}$$\Phi$$(PS)_{c}$序列.由系统(2.1)和引理2.7,有

$\begin{equation}\Phi(v_{n})\rightarrow\Phi(v_{0})+\sum\limits_{i = 1}^{i = k} {{\Phi ^\infty }} ({w^i})=c+o(1),\end{equation}$

其中$v_{0}$$\Phi$的临界点, $k\geq0, w^{i}$$\Phi^{\infty}$的临界点, $\Phi^{\infty}$如下定义:

根据条件$(V_{2})$,当$V(x)\not\equiv V(\infty)$时,由引理2.7, $m_{{\cal N}}\leq c<m^{\infty}$.因为对任一$i, \Phi^{\infty} (w^{i})\geq m^{\infty}>0.$由(2.1)和(2.4)式知, $k=0, $$\Phi(v_{0})=m_{{\cal N}}$.从而$v_{n}\rightarrow v_{0}.$故对任一$u\in{\cal N}$,有

故存在常数$c_{0}$,使得对任一$u\in{\cal N}$,有$\|u\|\geq c_{0}.$因此, $\Phi$的任一极值点列不为零,从而, $v_{0}\neq0$.证明完毕.

参考文献

Zhang J .

On the Schrödinger-Poisson equations with a general nonlinearity in the critical growth

Nonlinear Analysis: Theory, Methods and Applications, 2012, 75: 6391- 6401

DOI:10.1016/j.na.2012.07.008      [本文引用: 3]

Liu Z S , Guo S J .

On ground state solutions for the Schrödinger-Poisson equations with critical growth

Journal of Mathematical Analysis and Applications, 2014, 412: 435- 448

DOI:10.1016/j.jmaa.2013.10.066      [本文引用: 1]

Yang M H , Han Z Q .

Existence and multiplicity results for the nonlinear Schrödinger-Poisson systems

Nonlinear Analysis: Real World Applications, 2012, 13: 1093- 1101

DOI:10.1016/j.nonrwa.2011.07.008      [本文引用: 2]

Benci V , Fortunato D .

An eigenvalue problem for the Schrödinger-Maxwell equations

Topological Methods Nonlinear Analysis, 1998, 11: 283- 293

DOI:10.12775/TMNA.1998.019     

Huang W N , Tang X H .

Ground-state solutions for asymptotically cubic Schrödinger-Maxwell equations

Mediterranean Journal of Mathematics, 2016, 13: 3469- 3481

DOI:10.1007/s00009-016-0697-5      [本文引用: 2]

Tang X H .

Non-Nehari manifold method for asymptotically linear Schrödinger equation

Journal of the Australian Mathematical Society, 2015, 98: 104- 116

DOI:10.1017/S144678871400041X     

Tang X H .

Non-Nehari manifold method for superlinear Schrödinger equation

Taiwanese Jounal of Mathematics, 2014, 18: 1957- 1979

DOI:10.11650/tjm.18.2014.3541     

Kikuchi H .

On the existence of solution for elliptic system related to the Maxwell-Schrödinger equations

Nonlinear Analysis: Theory, Methods and Applications, 2007, 67: 1445- 1456

DOI:10.1016/j.na.2006.07.029     

Bartsch T, Wang Z Q, Willem M. The Dirichlet problem for superlinear elliptic equations//Mawhin J, et al. Stationary Partial Differential Equations. Amsterdam: Elsevier, 2005, 2: 1-55

Azzollini A , D'Avenia P .

On a system involving a critically growing nonlinearity

Journal of Mathematical Analysis and Applications, 2012, 387: 433- 438

DOI:10.1016/j.jmaa.2011.09.012     

Zhao L G , Zhao F K .

On the existence of solutions for the Schrödinger-oisson equations

Journal of Mathematical Analysis and Applications, 2008, 346: 155- 169

DOI:10.1016/j.jmaa.2008.04.053     

Ruiz D .

The Schrödinger-Possion equation under the effect of a nonlinear local term

Journal of functional analysis, 2006, 237: 655- 674

DOI:10.1016/j.jfa.2006.04.005      [本文引用: 2]

Yosida K . Functional Analysis. Berlin, Heidelberg: Springer, 1995

[本文引用: 1]

Cerami G , Vaira G .

Positive solutions for some non-autonomous Schrödinger-Poisson systems

Journal of Differential Equations, 2010, 248: 521- 543

DOI:10.1016/j.jde.2009.06.017      [本文引用: 1]

Berestycki H , Lions P L .

Nonlinear scalar field equations. I. existence of a ground state

Archive for Rational Mechanics and Analysis, 1983, 82: 313- 345

DOI:10.1007/BF00250555      [本文引用: 1]

Willem M . Minimax Theorems. New York: Springer, 1997

[本文引用: 2]

Adams R A , Fournier J F . Sobolev Spaces. New York: Academic Press, 2003

/