Processing math: 30%

数学物理学报, 2019, 39(2): 307-315 doi:

论文

拟线性椭圆系统非径向爆破解的非存在性

计婷1, 胡良根,1, 曾晶2

The Non-Existence of Non-Radial Blow-Up Solutions for the Quasilinear Elliptic System

Ji Ting1, Hu Lianggen,1, Zeng Jing2

通讯作者: 胡良根, E-mail: hulianggen@tom.com

收稿日期: 2017-10-12  

基金资助: 国家自然科学基金.  11471174
国家自然科学基金.  11501110
浙江省自然科学基金.  LY17A010007
宁波市自然科学基金.  2018A610194

Received: 2017-10-12  

Fund supported: the NSFC.  11471174
the NSFC.  11501110
the Natural Science Foundation of Zhejiang Province.  LY17A010007
the Natural Science Foundation of Ningbo.  2018A610194

摘要

该文考虑拟线性椭圆系统

Δpiui+ζi(|x|)|ui|pi1=ηi(|x|)fi(u1,,um),

其中i=1,,m, pi2, ζiηi是正连续函数, fi是非负连续函数且关于每个分量是非减的.通过应用新建立的比较原理证明系统不存在非径向爆破解.

关键词: 拟线性椭圆系统 ; 比较原理 ; 非存在性 ; 爆破解

Abstract

In this paper, we consider the following quasilinear elliptic system

Δpiui+ζi(|x|)|ui|pi1=ηi(|x|)fi(u1,,um),mboxin RN,

where i=1,,m, pi2, ζi and ηi are positive continuous functions, and fi is a non-negative continuous function and nondecreasing in each component for every i{1,2,,m}. After using some new comparison principle, we are able to show that the system does not admit any nonradial blow-up solutions.

Keywords: Quasilinear elliptic system ; Comparison principle ; Nonexistence ; Blow-up solution

PDF (336KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

计婷, 胡良根, 曾晶. 拟线性椭圆系统非径向爆破解的非存在性. 数学物理学报[J], 2019, 39(2): 307-315 doi:

Ji Ting, Hu Lianggen, Zeng Jing. The Non-Existence of Non-Radial Blow-Up Solutions for the Quasilinear Elliptic System. Acta Mathematica Scientia[J], 2019, 39(2): 307-315 doi:

1 引言

本文考虑拟线性椭圆系统

{Δp1u1+ζ1(|x|)|u1|p11=η1(|x|)f1(u1,,um),  Δpmum+ζm(|x|)|um|pm1=ηm(|x|)fm(u1,,um), xRN,
(1.1)

其中i=1,,m, pi2, Δpiui=div(|ui|pi2ui), ζiηi是正连续函数, fi是非负连续函数且关于每个分量是非减的.

拟线性算子Δp (p2)常用于描述许多物理现象的数学模型.在非牛顿流中流体的切向ν和速度uν=r(x)|u|p2u的这种相关形式.而p=2 (p<2, p>2)的情形在一些反应扩散方程和扭转蠕变问题分别表示流体是牛顿(伪塑性,膨胀)的. Diaz[1]和Lions[2]描述了拟线性系统的物理背景,且给出了含Δp算子的自由边界问题的数学处理方法.近年来拟线性椭圆系统解的性质引起许多专家关注,如文献[3-10].对于m=2p1=p2=2情形,文献[11-13]在适当条件下获得了爆破解的存在性.而对于p1,p2,,pm2关于非径向解的研究有很多困难且非常有意义.

定义1.1  如果系统(1.1)的解(u1,,um)对每个分量都有ui(x)(|x|),则称其为爆破解.

对于径向解情形,张新光等人[9]考虑了系统

div(Li(|ui|)ui)+hi(|x|)Li(|ui|)|ui|=ai(|x|)gi(u1,,um), xRN,

ai, hiLigi满足适当条件时,证明其存在无穷多个正径向爆破解的充要条件是

0L1i(Hi(r)1r0Hi(s)ai(s)ds)dr=,i=1,,m,

其中Hi(r)=rN1er0hi(s)dsLi(s)=sLi(s).而Covei[4]研究了类似于系统(1.1)的正径向解的非存在性,其条件是对任意的i{1,2,,m}, fi+的邻域内是有界的.

对于非径向解情形, Cingolani等人[14]考虑了临界椭圆方程具有有限能量的正解

Δu+a(x)u=u(N+2)/(N2), xRN,
(1.2)

其中>0, N>4a(x)是一个不恒为0的非负连续函数.他们应用局部Pohozaev恒等式证明了如果a(x)在零点x0的平坦阶是ρ[2,N4)N7,则当+时,方程(1.2)不存在具有爆破和集中现象的解u. 2012年, Hamydy等人[15]给出了系统

{Δpu+λ(|x|)|u|p1=ϕ(|x|)f(v),Δqv+μ(|x|)|v|q1=ψ(|x|)g(u), xRN

爆破解存在和非存在的充分条件.

鉴于已有成果,自然会产生一个问题:能否证明系统(1.1)不存在非径向爆破解?

本文利用新建立的比较原理对上面问题给出了一个肯定回答.记I:={1,2,,m}.对所有的r0iI,定义

Ai(r):=rN1er0ζi(s)dsBi(r):=(Ai(r)1r0Ai(s)ηi(s)ds)1pi1.

如果j (或i)=m,则记j+1(i+1):=1.假设存在某个指标iI,使得

(f1)存在常数K和连续函数˜fi,使得对任意的jI,当tj足够大时,有fi(t1,,tm)K˜fi(ti+1)成立且˜f 2pipi1i˜fi+处有界.

(f2)存在常数K,有fi+1(t1,,tm)Ktsi+1i+2,其中0<si+1<pi+11.

(f3) fj(t1,,tm)Ktsjj+1,其中0<sjpj1jI{i,i+1}.

定理1.1  如果存在某个指标i,使得下面条件之一成立

(1) (f1)-(f3)成立和

+0Bj(t)dt<+,jI.
(1.3)

(2) fi有界且0Bi(t)dt<.

则系统(1.1)不存在连续非径向爆破解.

注1.1  (ⅰ)相比于文献[15,定理1.2],本文建立了一类椭圆系统非径向爆破解的非存在性,而系统的方程个数是任意有限个,且非线性项fi与所有未知变量u1,,um相关.

(ⅱ)相比于文献[4,定理1.1],本文利用新建立的比较原理证明系统(1.1)非径向爆破解的非存在性.

(ⅲ)采用类似于文献[5-6, 8-9]的方法可以发现,如果条件(f1)-(f3)成立且

0(Aj(t)1t0Aj(s)ηj(s)ds)1pj1dt=+,jI.

则系统(1.1)有无穷多个正径向爆破解.

(ⅳ)条件(f2)和(f3)的假设只要求在+处的邻域内成立.

推论1.1  设条件(1.3)成立,且存在某个iI使得

(f1') fi(t1,,tm)Ktsii+1;

(f2') fj(t1,,tm)Ktsjj+1,

其中0<si<pi1, 0<sjpj1jI{i},则系统(1.1)只有有界连续解.

2 预备知识和引理

全文用C表示与fiui无关的正常数. Br(x)记为RN中在x点以r为半径的球.记Br=Br(0).ΩRN是一个开有界集.

引理2.1[16]  设h(x,t,η)关于xΩ是可测的,关于t是连续的,且存在η使得在Ω×R×RN上满足|h(x,t,η)|ι(1+|η|)p1.uW1,p(Ω)L(Ω)Δpu=h(x,u,u)的一个弱解.则对任意的yΩ和在Ω中的任意球BR(y)(R(0,1)),存在一个α>0和依赖于N,p,R,ι的常数{\cal C},使得对任意的x, x'\in B_R(y),有

\begin{eqnarray*} |\nabla u(x)-\nabla u(x')| < {\cal C} |x-x'|^{\alpha}\;\ \mbox{和}\;\ |\nabla u(x)| <{\cal C}. \end{eqnarray*}

采用引理2.1和文献[17,引理3.2]中类似的证明方法可以建立下面结果:

引理2.2  设u \in W^{1, p}(\Omega)是方程\Delta_p u+\zeta(x) |\nabla u|^{p-1}=F(x, u)\Omega中的一个解,其中\zetaF: \Omega\times \mathbb{R} \to [0, \infty)是连续函数.如果u\in L_{loc}^{\infty}(\Omega),则|\nabla u| \in L_{loc}^{\infty}(\Omega).

受文献[15,引理2.1-2.2]的思想启发可以建立系统(1.1)的一个新的比较原理.

引理2.3  设(u_1, \cdots, u_m) \in W^{1, p_1}(\Omega) \times \cdots \times W^{1, p_m}(\Omega)是系统(1.1)的一个解,且对任意的j \in \mathbb{I},有|\nabla u_j| \in L_{loc}^{\infty}(\Omega).如果存在常数\beta>0和某个指标i \in \mathbb{I},使得

(ⅰ)在\partial \Omega上有\beta u_i-w_i <0;

(ⅱ) \left |\{x \in \Omega: \beta u_i-w_i>0 \} \right | \neq 0;

(ⅲ) \beta > \sup\limits_{\Omega} \left ( \frac{f_i(w_1, \cdots, w_m)}{f_i(u_1, \cdots, u_m)} \right )^{\frac{1}{p_i-1}}.

对任意j \in \mathbb{I}, w_j \in W^{1, p_j}(\Omega)|\nabla w_j| \in L_{loc}^{\infty}(\Omega).(w_1, \cdots, w_m)不是系统(1.1)的解.

  假设矛盾,即(w_1, \cdots, w_m)是系统(1.1)的解.

不失一般性,假设条件(i)-(iii)对指标i=1成立.取\delta : =\sup\limits_{\Omega} (\beta u_1-w_1)>0.

\begin{eqnarray*} \Omega_n : =\{x\in \Omega :\, \beta u_1(x)-w_1(x) >\delta_n\}\; \mbox{和}\; \Omega_n' : =\{x\in \Omega_n :\, \nabla \beta u_1 \neq \nabla w_1\}, \end{eqnarray*}

其中\delta_n= \left\{\begin{array}{ll} \delta-\frac{1}{n}, & \mbox{如果}\;\ \delta <+\infty, \\ n, & \mbox{如果}\;\ \delta =+\infty. \end{array}\right.因为|\nabla u_1|\in L_{loc}^{\infty} (\Omega)|\nabla w_1|\in L_{loc}^{\infty} (\Omega),选择

\begin{eqnarray*} \tau=\left (1+\frac{\inf\limits_{\Omega_n'} \eta_1(|x|)\left [\beta^{p_1-1}f_1(u_1, \cdots, u_m)-f_1(w_1, \cdots, w_m) \right ]}{\|\zeta_1\|_{\infty, \Omega}\left (\|\nabla \beta u_1\|_{\infty, \Omega_n'}^{p_1-1}+2\|\nabla w_1\|_{\infty, \Omega_n'}^{p_1-1}+1 \right )} \right )^{\frac{1}{p_1-1}}. \end{eqnarray*}

\begin{eqnarray*} \Omega_{n, \tau}^1: & =&\{x \in \Omega_n':\, |\nabla \beta u_1| \ge \tau |\nabla w_1| \}, \\ \Omega_{n, \tau}^2: & =&\{x \in \Omega_n':\, |\nabla w_1| \ge \tau |\nabla \beta u_1| \}, \\ \Omega_{n, \tau}^3: & =&\left \{ x\in \Omega_n' :\, \tau |\nabla \beta u_1|>|\nabla w_1|>\frac{1}{\tau}|\nabla \beta u_1| \right \}. \end{eqnarray*}

选择函数序列\psi_n= \left (\beta u_1-w_1-\delta_n \right )^+= \max \{\beta u_1-w_1-\delta_n, 0\} \in W_0^{1, p_1}(\Omega).\psi_n乘以下面两个方程并在\Omega中积分

\Delta_{p_1}u_1+\zeta_1 (|x|)|\nabla u_1|^{p_1-1}=\eta_1(|x|)f_1 (u_1, \cdots, u_m),

\Delta_{p_1}w_1+\zeta_1 (|x|)|\nabla w_1|^{p_1-1}=\eta_1(|x|)f_1 (w_1, \cdots, w_m),

可得

\begin{eqnarray}\label{eq:2.2}&&\int_{\Omega_n} \left (\beta^{p_1-1}|\nabla u_1|^{p_1-2}\nabla u_1-|\nabla w_1|^{p_1-2}\nabla w_1 \right )\nabla \psi_n(x){\rm d}x \nonumber \\&= & \int_{\Omega_n} \zeta_1(|x|) \left (\beta^{p_1-1}|\nabla u_1|^{p_1-1}-|\nabla w_1|^{p_1-1} \right )\psi_n(x){\rm d}x \nonumber \\&& -\int_{\Omega_n} \eta_1(|x|)\Big [ \beta^{p_1-1}f_1(u_1(x), \cdots, u_m(x)) -f_1(w_1(x), \cdots, w_m(x)) \Big ]\psi_n(x){\rm d}x.\end{eqnarray}
(2.1)

鉴于文献[16,引理1]可知,存在\lambda_0>0使得

\begin{equation}\label{eq:2.3}\lambda_0 \int_{\Omega_n} |\nabla \psi_n|^{p_1} {\rm d}x \le \int_{\Omega_n} \left (\beta^{p_1-1}|\nabla u_1|^{p_1-2}\nabla u_1-|\nabla w_1|^{p_1-2}\nabla w_1 \right )\nabla \psi_n(x){\rm d}x.\end{equation}
(2.2)

显然在\Omega_{n, \tau}^3中,有

\begin{equation}\label{eq:2.4}|\nabla \beta u_1|^{p_1-1}-|\nabla w_1|^{p_1-1} \le \left (\tau^{p_1-1}-1 \right )|\nabla w_1|^{p_1-1}.\end{equation}
(2.3)

计算发现,对任意的\gamma >1, p>2{\cal X} \ge \gamma,有

\begin{eqnarray*}{\cal X}^{p-1}-1 \le \left (\frac{\gamma}{\gamma-1} \right )^{p-2} ({\cal X}-1)^{p-1}+\gamma^{p-2}-1.\end{eqnarray*}

\frac{|\nabla \beta u_1|}{|\nabla w_1|} \ge \tau >1意味着

\begin{eqnarray*}\label{eq:2.5}\left ||\nabla \beta u_1|^{p_1-1}- |\nabla w_1|^{p_1-1} \right | \le \left (\frac{\tau}{\tau-1} \right )^{p_1-2} |\nabla \beta u_1-\nabla w_1|^{p_1-1}+\left (\tau^{p_1-2}-1\right )|\nabla w_1|^{p_1-1}.\end{eqnarray*}

联合(2.3)式可推出

\begin{eqnarray*}&&\int_{\Omega_n} \zeta_1(|x|) \left (\beta^{p_1-1}|\nabla u_1|^{p_1-1}-|\nabla w_1|^{p_1-1} \right )\psi_n(x){\rm d}x \\&\le & \|\zeta_1\|_{\infty, \Omega} \left (\frac{\tau}{\tau-1} \right )^{p_1-2} \left (\int_{\Omega_{n, \tau}^1} |\nabla \psi_n|^{p_1-1}\psi_n {\rm d}x +\int_{\Omega_{n, \tau}^2} |\nabla \psi_n|^{p_1-1}\psi_n {\rm d}x\right )\\&& +\|\zeta_1\|_{\infty, \Omega} \left (\tau^{p_1-2}-1\right ) \left (\int_{\Omega_{n, \tau}^1 } |\nabla w_1|^{p_1-1}\psi_n {\rm d}x + \int_{\Omega_{n, \tau}^2} |\nabla \beta u_1|^{p_1-1}\psi_n {\rm d}x \right )\\& &+ \int_{\Omega_{n, \tau}^3} \zeta_1(|x|) \left ( |\nabla \beta u_1|^{p_1-1}-|\nabla w_1|^{p_1-1}\right ) \psi_n {\rm d}x\\&\le & \|\zeta_1\|_{\infty, \Omega} \left (\frac{\tau}{\tau-1} \right )^{p_1-2} \int_{\Omega_n'} |\nabla \psi_n|^{p_1-1}\psi_n {\rm d}x\\&& + \|\zeta_1\|_{\infty, \Omega} \int_{\Omega_n'} \left (\tau^{p_1-1}-1 \right ) (|\nabla \beta u_1|^{p_1-1}+2|\nabla w_1|^{p_1-1}) \psi_n{\rm d}x.\end{eqnarray*}

因此从(2.1)式和(2.2)式可得

\begin{eqnarray*}\lambda_0\int_{\Omega_n} |\nabla \psi_n|^{p_1} {\rm d}x&\le& \|\zeta_1\|_{\infty, \Omega} \left (\frac{\tau}{\tau-1} \right )^{p_1-2} \int_{\Omega_n'} |\nabla \psi_n|^{p_1-1}\psi_n {\rm d}x\\&& +\int_{\Omega_n'} \|\zeta_1\|_{\infty, \Omega} \left (\tau^{p_1-1}-1 \right ) (|\nabla \beta u_1|^{p_1-1}+2|\nabla w_1|^{p_1-1}) \psi_n {\rm d}x\\&& - \int_{\Omega_n}\eta_1(|x|) \left [\beta^{p_1-1}f_1(u_1, \cdots, u_m)-f_1(w_1, \cdots, w_m) \right ] \psi_n {\rm d}x.\end{eqnarray*}

\tau的定义可知

\begin{eqnarray*}\lambda_0\int_{\Omega_n} |\nabla \psi_n|^{p_1} {\rm d}x \le \|\zeta_1\|_{\infty, \Omega} \left (\frac{\tau}{\tau-1} \right )^{p_1-2} \left (\int_{\Omega_n'} |\nabla \psi_n|^{p_1} {\rm d}x \right )^{\frac{p_1-1}{p_1}} \left (\int_{\Omega_n'} \psi_n^{p_1} {\rm d}x \right )^{\frac{1}{p_1}}.\end{eqnarray*}

\begin{equation}\label{eq:2.6}\left ( \int_{\Omega_n'}|\nabla \psi_n|^{p_1} {\rm d}x \right )^{\frac{1}{p_1}} \le \frac{\|\zeta_1\|_{\infty, \Omega}}{\lambda_0} \left (\frac{\tau}{\tau-1} \right )^{p_1-2} \left (\int_{\Omega_n'} \psi_n^{p_1} {\rm d}x \right )^{\frac{1}{p_1}}.\end{equation}
(2.4)

选择\frac{Np_1}{N+p_1} < \kappa < \min \{N, p_1\},利用Sobolev嵌入定理可得

\begin{eqnarray*}\left (\int_{\Omega} \psi_n^{\kappa^*} {\rm d}x \right )^{\frac{1}{\kappa^*}} \le {\cal C} \left ( \int_{\Omega} |\nabla \psi_n|^{\kappa} {\rm d}x \right )^{\frac{1}{\kappa}}, \end{eqnarray*}

其中\kappa^*=\frac{N\kappa}{N-\kappa}.

\begin{eqnarray*}\left (\int_{\Omega_n'} \psi_n^{\kappa^*} {\rm d}x \right )^{\frac{1}{\kappa^*}} \le {\cal C} \left ( \int_{\Omega_n'} |\nabla \psi_n|^{\kappa} {\rm d}x \right )^{\frac{1}{\kappa}}\le {\cal C} \left (\int_{\Omega_n'} |\nabla \psi_n|^{p_1} {\rm d}x \right )^{\frac{1}{p_1}} |\Omega_n'|^{\frac{1}{\kappa}-\frac{1}{p_1}}.\end{eqnarray*}

从(2.4)式可知

\begin{eqnarray*}\left (\int_{\Omega_n'} \psi_n^{\kappa^*} {\rm d}x \right )^{\frac{1}{\kappa^*}} \le \frac{{\cal C} \|\zeta_1\|_{\infty, \Omega}}{\lambda_0} \left (\frac{\tau}{\tau-1}\right )^{p_1-2} \left (\int_{\Omega_n'} \psi_n^{p_1}{\rm d}x \right )^{\frac{1}{p_1}} |\Omega_n'|^{\frac{1}{\kappa}-\frac{1}{p_1}}.\end{eqnarray*}

\kappa^* >p_1,应用ölder不等式可得

\begin{eqnarray*}\left (\int_{\Omega_n'} \psi_n^{\kappa^*} {\rm d}x \right )^{\frac{1}{\kappa^*}} \le \frac{{\cal C} \|\zeta_1\|_{\infty, \Omega}}{\lambda_0} \left (\frac{\tau}{\tau-1}\right )^{p_1-2} \left (\int_{\Omega_n'} |\psi_n|^{\kappa^*} {\rm d}x \right )^{\frac{1}{\kappa^*}} |\Omega_n'|^{\frac{1}{\kappa}-\frac{1}{\kappa^*}}.\end{eqnarray*}

1 \le \frac{{\cal C} \|\zeta_1\|_{\infty, \Omega}}{\lambda_0} \left (\frac{\tau}{\tau-1}\right )^{p_1-2} |\Omega_n'|^{\frac{1}{\kappa}-\frac{1}{\kappa^*}}.n \to \infty可以发现矛盾.

3 主要结果的证明

定理1.1的证明  假设系统存在一个连续爆破解(w_1, \cdots, w_m).

(1)不失一般性,设i=1时条件(f1)-(f3)成立.

利用文献[8,定理1]的方法可以证明系统(1.1)有正径向解.因此,我们首先考虑系统(1.1)的径向解(u_1, \cdots, u_m)且对任意的j \in \mathbb{I},有u_j' \ge 0.计算可得

\begin{eqnarray*} \left\{\begin{array}{ll} \left ( (u_1')^{p_1-1} \right )'+\frac{N-1}{r} \left (u_1'\right )^{p_1-1}+\zeta_1(r) \left (u_1'\right )^{p_1-1}=\eta_1(r)f_1(u_1, \cdots, u_m), \\~~\vdots \\ \left ( (u_m')^{p_m-1} \right )'+\frac{N-1}{r} \left (u_m'\right )^{p_m-1}+\zeta_m(r) \left (u_m' \right )^{p_m-1}=\eta_m(r)f_m(u_1, \cdots, u_m). \end{array}\right. \end{eqnarray*}

A_j(r)=r^{N-1} {\rm e}^{\int_0^r \zeta_j(s){\rm d}s}乘以系统第j个方程可得

\begin{equation}\label{eq:3.1} \left\{\begin{array}{ll} \left ((u_1')^{p_1-1} A_1(r)\right )'=A_1(r)\eta_1(r)f_1(u_1, \cdots, u_m), \\~~\vdots\\ \left ((u_m')^{p_m-1} A_m(r)\right )'=A_m(r)\eta_m(r)f_m(u_1, \cdots, u_m). \end{array}\right. \end{equation}
(3.1)

对任意的j \in \mathbb{I},设u_j(0):=\alpha_j.则对任意的r>0,对(3.1)式两边从0r积分

\begin{eqnarray*} \left\{\begin{array}{ll} u_1(r)=\alpha_1+\displaystyle \int_0^r \left (A_1(t)^{-1} \displaystyle \int_0^t A_1(s)\eta_1(s) f_1(u_1, \cdots, u_m){\rm d}s \right )^{\frac{1}{p_1-1}}{\rm d}t, \\ ~~ \vdots\\ u_m(r)=\alpha_m+\displaystyle \int_0^r \left (A_m(t)^{-1} \displaystyle \int_0^t A_m(s)\eta_m(s) f_m(u_1, \cdots, u_m){\rm d}s \right )^{\frac{1}{p_m-1}}{\rm d}t. \end{array}\right. \end{eqnarray*}

j=3, \cdots, m,取\alpha_j \le 0.则条件(f3)和f_j的单调性意味着

\begin{eqnarray}\label{eq:3.2} u_j(R) &=& \alpha_j+\displaystyle \int_0^R \left (A_j(t)^{-1} \displaystyle \int_0^t A_j(s)\eta_j(s) f_j(u_1(s), \cdots, u_m(s)){\rm d}s \right )^{\frac{1}{p_j-1}}{\rm d}t \nonumber \\& \le & \left [Ku_{j+1}(R)\right ]^{\frac{s_j}{p_j-1}} \displaystyle \int_0^R B_j(t){\rm d}t. \end{eqnarray}
(3.2)

这里u_{m+1}:=u_1.由(1.3)式可假定 \int_0^R B_j(t){\rm d}t \ge 1 (\forall j \in \mathbb{I}).选择\alpha_1 =0\alpha_2 \ge 0,则

\begin{eqnarray}\label{eq:3.3} u_1(R)&= & \int_0^R \left (A_1^{-1}(t) \int_0^t A_1(s)\eta_1(s)f_1(u_1(s), \cdots, u_m(s)){\rm d}s \right )^{\frac{1}{p_1-1}}{\rm d}t \nonumber \\& \le & f_1(u_1(R), \cdots, u_m(R))^{\frac{1}{p_1-1}} \displaystyle \int_0^R B_1(t){\rm d}t. \end{eqnarray}
(3.3)

联合(3.2)式和(3.3)式可得

\begin{eqnarray*} u_2(R) &\le & \alpha_2+ f_2(u_1(R), \cdots, u_m(R))^{\frac{1}{p_2-1}} \int_0^R \left (A_2(t)^{-1} \int_0^t A_2(s)\eta_2(s){\rm d}s \right )^{\frac{1}{p_2-1}} {\rm d}t \\ & \le & \alpha_2+K^{m-1}\left (f_1(u_1(R), \cdots, u_m(R))^{\frac{1}{p_1-1}} \right )^{\frac{s_m}{p_m-1}\times \cdots \times \frac{s_2}{p_2-1}} \prod\limits_{j=1}^m \int_0^R B_j(t){\rm d}t. \end{eqnarray*}

{\cal M}(R):=\prod\limits_{j=1}^m \int_0^R B_j(t){\rm d}t.

\begin{eqnarray}\label{eq:3.5} 0& \le & 1-\frac{\alpha_2}{u_2(R)} \le \frac{K^{m-1} {\cal M}(R) f_1(u_1(R), \cdots, u_m(R))^{\frac{\sigma}{p_1-1}} }{u_2(R)} \nonumber \\ &\le & \frac{{\cal M}(R) K^{m-1}{\cal K}^{\frac{\sigma}{p_1-1}} \widetilde{f}_1(u_2(R))^{\frac{\sigma}{p_1-1}}}{u_2(R)}, \end{eqnarray}
(3.4)

其中\sigma: =\frac{s_m}{p_m-1}\times \cdots \times \frac{s_2}{p_2-1}.显然0 <\sigma < 1.利用L'Hôpital法则和条件(f1)可得

\begin{eqnarray*} \lim\limits_{t \to \infty} \frac{\widetilde{f}_1(t)^{\frac{1}{p_1-1}}}{t^{\frac{1}{\sigma}}}=\lim\limits_{t\to \infty} \frac{\sigma \widetilde{f}_1(t)^{\frac{2-p_1}{p_1-1}}\widetilde{f}_1'(t)}{(p_1-1) t^{\frac{1}{\sigma}-1}}=0. \end{eqnarray*}

从而联合(3.4)式意味着

{\mathfrak U}_2:=\mathop {\sup }\limits_{{{\mathbb{R}}^N}} {u_2}(|x|) <\infty .

由(3.3)式容易推出

\begin{eqnarray*}u_1(R) &\le & f_1(u_1(R), \cdots, u_m(R))^{\frac{1}{p_1-1}} \int_0^R B_1(t){\rm d}t \\&\le & \widetilde{f}_1(u_2(R))^{\frac{1}{p_1-1}}\int_0^{\infty} B_1(t){\rm d}t \\&& +\left [f_1(u_1(R), \cdots, u_m(R))^{\frac{1}{p_1-1}}-\widetilde{f}_1(u_2(R))^{\frac{1}{p_1-1}} \right ]\int_0^R B_1(t){\rm d}t \\&\le &{\cal M}(\infty)({\cal K}+2) \widetilde{f}_1(u_2(R))^{\frac{1}{p_1-1}}.\end{eqnarray*}

\widetilde{f}_1的连续性和u_2(R)的有界性意味着

\begin{eqnarray*}{\mathfrak U}_1:=|u_1|_{\infty} <\infty.\end{eqnarray*}

从(3.3)式可得对r>0,有0 <u_1(r) <{\mathfrak U}_1.|x| \to \infty时,使用\alpha_2 \le u_2w_1 (x)\to \infty可知对所有的R>0,有

\begin{eqnarray*}\sup\limits_{B_R} \left [\frac{f_1(w_1, \cdots, w_m)}{f_1(u_1, \cdots, u_m)} \right ]^{\frac{1}{p_1-1}} & \le &\sup\limits_{B_R} \left [\frac{{\cal K} \widetilde{f}_1(w_2)}{f_1(\alpha_1, \alpha_2, \cdots, \alpha_m)} \right ]^{\frac{1}{p_1-1}}\\[0.1cm]& <&\beta (R):=\inf\limits_{|x|=R} \frac{w_1}{{\mathfrak U}_1}-\varepsilon < \inf\limits_{|x|=R} \frac{w_1}{u_1}, \end{eqnarray*}

其中\alpha_2=|w_2|_{\infty, B_R}\varepsilon是非常小的正数.因为当R \to \infty时有\beta (R) \to \infty,则存在R_1>0,使得\left |\{x\in B_{R_1}: \beta (R_1)u_1-w_1>0\}\right |\neq 0.w_1的爆破性与u_1的有界性,容易验证引理2.3的条件(ⅰ)成立.

另一方面,对方程\Delta_{p_1}w_1+\zeta_1(|x|) |\nabla w_1|^{p_1-1}=\eta_1(|x|) f_1(w_1, \cdots, w_m)利用引理2.2和联合f_1(w_1, \cdots, w_m)B_R中的有界性,可得对所有的R <R_1,有|\nabla w_1| \in L^{\infty} (B_R).另外对所有的R <R_1,有|\nabla u_1|\in L^{\infty}(B_R).引理2.3意味着这是一个矛盾.

(2)假设f_1是有界且 \int_0^{\infty} B_1(t){\rm d}t <\infty.

\alpha_1>0,由(3.1)式可得

\begin{eqnarray*}u_1(R)=\alpha_1+ \int_0^R \left (A_1^{-1}(t) \int_0^t A_1(s)\eta_1(s)f_1(u_1(s), \cdots, u_m(s)){\rm d}s \right )^{\frac{1}{p_1-1}}{\rm d}t.\end{eqnarray*}

u_1有界且对所有的r>0,有u_1>0.则存在R_2>0\beta_0>0,使得对所有的R \ge R_2\beta>\beta_0,有\left | \{x\in B_R: \beta u_1-w_1>0 \} \right |\neq 0.u_2 \ge 1,则

\begin{eqnarray*}\mathop {\sup }\limits_{{{\mathbb{R}}^N}}\frac{f_1(w_1, \cdots, w_m)}{f_1(u_1, \cdots, u_m)} <\infty.\end{eqnarray*}

选择\beta >\max \left \{\beta_0, \mathop {\sup }\limits_{{{\mathbb{R}}^N}} \left ( \frac{f_1(w_1, \cdots, w_m)}{f_1(u_1, \cdots, u_m)} \right )^{\frac{1}{p_1-1}} \right \}.w_1(x) \to \infty (|x| \to \infty)可知存在R_3 >0,使得在\partial B_R上对所有的R \ge R_3,有\beta u_1-w_1 <0.R_4 >\max \{R_2, R_3\},则

\begin{eqnarray*}\sup\limits_{B_{R_4}} \left ( \frac{f_1(w_1, \cdots, w_m)}{f_1(u_1, \cdots, u_m)} \right )^{\frac{1}{p_1-1}} <\beta <\inf\limits_{|x|=R_4} \frac{w_1}{u_1}.\end{eqnarray*}

容易证明: \forall R <R_4,有|\nabla w_1| \in L^{\infty} (B_R)|\nabla u_1|\in L^{\infty}(B_R).引理2.3意味着矛盾.

推论1.1的证明  假设矛盾,即假设第i个解u_i是爆破的.从条件(f1')和(f2')容易证明条件(f1)-(f3)成立.则类似定理1.1证明可以得到一个矛盾.

参考文献

Diaz J I. Nonlinear Partial Differential Equations and Free Boundary. Boston, MA: Pitman Research, 1985

[本文引用: 1]

Lions J L. Quelques Methodes de Resolution des Problimes aux Limits Non-lineaires. Paris: Dunod, 1969

[本文引用: 1]

Bandle C , Giasrrusso E .

Boundary blowup for semilinear elliptic equations with nonlinear gradient terms

Adv Differential Equations, 1996, 1: 133- 150

[本文引用: 1]

Covei D P .

Non-existence criteria for solutions of the Lane-Emden-Fowler system

Appl Math Letters, 2012, 25: 610- 613

DOI:10.1016/j.aml.2011.09.069      [本文引用: 2]

Covei D P .

Schrödinger systems with a convection term for the (p1, ···, pd)-Laplacian in \mathbb{R}^N

Electron J Differential Equations, 2012, 67: 1- 13

[本文引用: 1]

Covei D P .

Radial solutions for a quasilinear elliptic system of Schrödinger type

Comput Math Appl, 2013, 65: 1187- 1193

DOI:10.1016/j.camwa.2013.02.013      [本文引用: 1]

陈林.

一类拟线性Kirchhoff型椭圆方程组多解的存在性

数学物理学报, 2017, 37A (4): 671- 683

URL    

Chen L .

Multiple solutions for a quasilinear elliptic system of Kirchhoff type

Acta Math Sci, 2017, 37A (4): 671- 683

URL    

Zhang X G .

A necessary and sufficient condition for the existence of large solutions to mixed type elliptic systems

Appl Math Letters, 2012, 25: 2359- 2364

DOI:10.1016/j.aml.2012.07.002      [本文引用: 2]

Zhang X G , Liu L S , Liu Y H , Caccetta L .

Entire large solutions for a class of Schrödinger systems with a nonlinear random operator

J Math Anal Appl, 2015, 423: 1650- 1659

DOI:10.1016/j.jmaa.2014.10.068      [本文引用: 2]

Zhang Z J .

Existence of positive radial solutions for quasilinear elliptic equations and systems

Electron J Differential Equations, 2016, 50: 1- 9

URL     [本文引用: 1]

Lair A V .

A necessary and sufficient condition for the existence of large solutions to sublinear elliptic systems

J Math Anal Appl, 2010, 365: 103- 108

DOI:10.1016/j.jmaa.2009.10.026      [本文引用: 1]

Peterson J D , Wood A W .

Large solutions to non-monotone semilinear elliptic systems

J Math Anal Appl, 2011, 384: 284- 292

DOI:10.1016/j.jmaa.2011.05.061     

Zhang X G , Liu L S .

The existence and nonexistence of entire positive solutions of semilinear elliptic systems with gradient term

J Math Anal Appl, 2010, 371: 300- 308

DOI:10.1016/j.jmaa.2010.05.029      [本文引用: 1]

Cingolani S , Pistoia A .

Nonexistence of single blow-up solutions for a nonlinear Schrödinger equation involving critical Sobolev exponent

Z Angew Math Phys, 2004, 55: 201- 215

DOI:10.1007/s00033-003-1030-2      [本文引用: 1]

Hamydy A , Massar M , Tsouli N .

Blow-up solutions to a (p1, p2)-Laplacian system with gradient term

Appl Math Letters, 2012, 25: 745- 751

DOI:10.1016/j.aml.2011.10.014      [本文引用: 3]

Tolksdorf P .

Regularity for a more general class of quasilinear elliptic equations

J Differential Equations, 1984, 51: 126- 150

DOI:10.1016/0022-0396(84)90105-0      [本文引用: 2]

Hamydy A .

Existence and uniqueness of nonnegative solutions for a boundary blow-up problem

J Math Anal Appl, 2010, 371: 534- 545

DOI:10.1016/j.jmaa.2010.05.053      [本文引用: 1]

/