Processing math: 4%

数学物理学报, 2019, 39(1): 59-66 doi:

论文

非线性复差分方程亚纯解的振荡性质

高晗佳, 赵小茜, 王珺,

The Oscillating Property of the Meromorphic Solution of Nonlinear Difference Equations

Gao Hanjia, Zhao Xiaoxi, Wang Jun,

通讯作者: 王珺, E-mail: majwang@fudan.edu.cn

收稿日期: 2017-11-3  

基金资助: 复旦大学基础学科拔尖人才计划(荣誉项目)
国家自然科学基金.  11771090
上海市自然科学基金.  17ZR1402900

Received: 2017-11-3  

Fund supported: the Top Talent Project for Basic Science in Fudan University (Honor Project)
the NSFC.  11771090
the Natural Science Foundation of Shanghai.  17ZR1402900

摘要

该文主要研究以下两类非线性复差分方程

anzfz+njn+…+a1zfz+1)j1+a0zfzj0=bz),

anzfqnzjn+…+a1zfqzj1+a0zfzj0=bz),

其中,aiz)(i=0,1,…,n)与bz)为非零有理函数,jii=0,1,…,n)为正整数,q为非零复常数.当上述方程的亚纯解的超级小于1并且极点较少时,对解的零点分布进行了估计.此外,当亚纯解具有无穷多个极点时,也对极点收敛指数给出下界.

关键词: 非线性复差分方程 ; 亚纯解 ; 极点 ; 零点 ; 亏量

Abstract

In this paper, we discuss the following difference equations

an(z)f(z+n)jn+…+a1(z)f(z+1)j1+a0(z)f(z)j0=b(z),

an(z)f(qnz)jn+…+a1(z)f(qz)j1+a0(z)f(z)j0=b(z),

where ai(z)(i=0, 1, …, n) and b(z) are nonzero rational functions, ji(i=0, 1, …, n) are positive integers, q is a nonzero complex constant. When the equations above have meromorphic solutions with hyper order less than 1 and few poles, we investigate the distributions of zeros. Besides, when the solution has infinitely many poles, we give the lower bound of the exponent of convergence of poles.

Keywords: Nonlinear difference equation ; Meromorphic solution ; Poles ; Zeros ; Deficiency

PDF (323KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

高晗佳, 赵小茜, 王珺. 非线性复差分方程亚纯解的振荡性质. 数学物理学报[J], 2019, 39(1): 59-66 doi:

Gao Hanjia, Zhao Xiaoxi, Wang Jun. The Oscillating Property of the Meromorphic Solution of Nonlinear Difference Equations. Acta Mathematica Scientia[J], 2019, 39(1): 59-66 doi:

1 引言与主要结果

本文中,亚纯函数均指在复平面上的亚纯函数,并采用Nevanlinna理论中的标准记号和基本结果,见参考文献[1-2].对于非常数的亚纯函数f(z), N(r,f)¯N(r,f)分别表示其极点的计数函数与精简计数函数, σ(f)μ(f)分别为其级和下级, T(r,f)为其特征函数.此外, S(r,f)表示满足S(r,f)=o(T(r,f))(r,rE)的量,其中例外集E(0,)的对数测度有穷,即E1tdt.

我们分别用λ(1f)λ(f)表示f的极点收敛指数和零点收敛指数,定义如下

λ(1f)=lim

为了细致地研究计数函数与特征函数的关系,人们还定义了fa处的亏量\delta(a, f)和精简亏量\Theta(a, f):

\delta(a, f)=1-\overline{\mathop{\lim}\limits_{r \rightarrow \infty}}\frac{N(r, \frac{1}{f-a})}{T(r, f)}; \quad \Theta(a, f)=1-\overline{\mathop{\lim}\limits_{r \rightarrow \infty}}\frac{\overline{N}(r, \frac{1}{f-a})}{T(r, f)}

特别地, f\infty处的精简亏量为\Theta(\infty , f)=1-\overline{\mathop{\lim}\limits_{r \rightarrow \infty}}\frac{\overline{N}(r, f)}{T(r, f)}.

本文中,我们将利用Nevanlinna理论讨论以下非线性方程

a_n(z)f(z+n)^{j_n}+\cdots+a_1(z)f(z+1)^{j_1}+a_0(z)f(z)^{j_0}=b(z),
(1.1)

a_n(z)f(q^nz)^{j_n}+\cdots+a_1(z)f(qz)^{j_1}+a_0(z)f(z)^{j_0}=b(z),
(1.2)

其中{a_i(z)(i=0, 1, \cdots, n)}{b(z)}均为非零有理函数, {j_i(i=0, 1, \cdots, n)}为正整数, q为非零复数.当j_i=1(i=0, 1, \cdots, n)时,方程(1.1)和(1.2)分别退化为线性差分方程和线性q -差分方程.线性差分方程超越亚纯解的存在性及其解析性质受到很大的关注,特别超越亚纯解的增长性已被学者们深入研究,其中蒋翼曼和冯绍继[3]证明了

定理A  假设 P_i(z)(i=0, 1, \cdots, n) 为多项式,并存在整数l \in [0, n] ,使得

{\rm deg}(P_l)>\max\limits_{0\le j \le n , j \ne l}{{\rm deg}(P_j)}.
(1.3)

如果f为方程

P_n(z)f(z+n)+\cdots+P_1(z)f(z+1)+P_0(z)f(z)=0
(1.4)

的非零亚纯解,则我们有\sigma(f)\ge 1.

随后,陈宗煊在文献[4]中弱化了定理A中的条件(1.3),对(1.4)式及其非齐次线性方程的亚纯解进行了讨论,得到

定理B  假设P_i(z)\ (i=0, 1, \cdots, n)F(z)均为多项式,满足FP_nP_0 t\equiv 0

{\rm deg}(P_n+\cdots+P_0)=\max\{{\rm deg}(P_j):j=0, 1, \cdots, n\} \ge 1.
(1.5)

如果f为以下方程的有穷级超越亚纯解

P_n(z)f(z+n)+\cdots+P_1(z)f(z+1)+P_0(z)f(z)=F(z).
(1.6)

则我们有\sigma(f)\ge 1\sigma(f)=\lambda(f).

定理C  假设多项式P_i(z)(i=0, 1, \cdots, n)满足P_nP_0 \ne 0和(1.5)式.对于方程(1.4)的非零有穷级亚纯解f(z),必然有\sigma(f)\ge 1.对于任意的非零复数a, fa无穷多次且\lambda(f-a)=\sigma(f).

如果方程(1.6)中FP_nP_0 t\equiv 0,当亚纯解f(z)具有无穷多个极点时,陈宗煊在文章[4]中也得到\lambda(\frac{1}{f})\ge 1的结论.

针对形式更一般的方程(1.1)和(1.2),我们讨论其亚纯解的增长性,零点和极点分布,并得到以下两个定理.

定理1.1  假设a_i(z)(i=0, 1, \cdots, n)b(z)均为非零有理函数, j_i(i=0, 1, \cdots, n)为正整数,如果f(z)为方程(1.1)的超越亚纯解,满足\sigma_2(f)=\varsigma < 1\Theta(\infty, f)=1,则我们有\delta(0, f) \le \frac{n}{n+1}.这里\sigma_2(f)f的超级,它的定义如下

\sigma_2(f)=\overline{\mathop{\lim}\limits_{r \rightarrow \infty }}\frac{\log^{+}\log^{+}T(r, f)}{\log r}.

定理1.2  假设q为非零复常数, a_i(z), j_i(i=0, 1, \cdots, n)b(z)均满足定理1.1的条件.如果f为方程(1.2)的超越亚纯解,满足\sigma_2(f)=\varsigma < 1\Theta(\infty, f)=1,则我们有\delta(0, f) \le \frac{n}{n+1}.

特别地,由定理1.1和定理1.2的结论,我们可继续得到方程(1.1)和(1.2)的这些亚纯解满足\mu(f) \le \lambda(f) \le \sigma(f).此外,我们利用陈宗煊在文献[4]中所用的思路,还得到以下结论:

定理1.3  假设a_i(z), j_i(i=0, 1, \cdots, n)b(z)均满足定理1.1中的条件,如果f(z)为方程(1.1)的超越亚纯解,若f有无穷多个极点,则\lambda(\frac{1}{f} )\ge 1.

2 所需引理

为了完成定理的证明,我们需要下面的引理.

引理2.1[5]  假设f(z)为亚纯函数, c为非零复常数,当r \rightarrow \infty时,成立

(1+o(1))T(r-|c|, f(z)) \le T(r, f(z+c)) \le (1+o(1))T(r+|c|, f(z)).

引理2.2[6]  假设f(z)为非常数亚纯函数,且\varsigma:=\sigma_2(f) <1,对于任意给定的正数\varepsilon和复数c,存在对数测度有限的集合F\subset(0, \infty),使得

m\left(r, \frac{f(z+c)}{f(z)}\right)=o\left(\frac{T(r, f)}{r^{1-\varsigma-\varepsilon}}\right), r\rightarrow \infty, r \notin F.

引理2.3[6]  假设T(r):{\Bbb R}^{+}\rightarrow {\Bbb R}^{+}为单调递增的连续函数, s为正实数.若

\varsigma=\overline{\mathop{\lim}\limits_{r \rightarrow \infty }}\frac{\log^{+}\log^{+}T(r)}{\log r}<1,

则对于满足0<\delta<1-\varsigma的任意数\delta,均有

T(r+s)=T(r)+o\left(\frac{T(r)}{r^{\delta}}\right), \quad r \rightarrow \infty, r \notin E,

其中, E \subset (0, \infty)为某个对数测度有限的集合.

引理2.4[2,定理1.55]  假设g_j(z)\ (j=1, 2, \cdots, p)为满足\Theta(\infty, g_j)=1 (j=1, 2, \cdots, p)的非常数亚纯函数, a_j\ (j=0, 1, 2, \cdots, p)均为非零复数.若\Sigma^p_{j=1} a_jg_j(z)=a_0,则

\Sigma^p_{j=1} \delta(0, g_j) \le p-1.

引理2.5  假设f(z)为非常数亚纯函数, c为非零复常数.如果\sigma_2(f)=\varsigma <1,则存在对数测度有穷的集合E \subset(0, \infty),使得当r \rightarrow \infty r \notin E时,我们有

(i)   T(r, f(z+c))=T(r, f(z))+S(r, f);

(ii)   N(r, f(z+c))=N(r, f(z))+S(r, f);

(iii)   \overline{N}(r, f(z+c))=\overline{N}(r, f(z))+S(r, f).

  不难看出, T(r, f(z))为关于r单调递增的连续函数.由引理2.3,我们可知:对于小于1-\varsigma的正数\delta,存在对数测度有穷的集合E_1 \subset (0, \infty),使得

\begin{eqnarray}T(r\pm |c|, f(z))&=&T(r, f(z))+o\left(\frac{T(r, f(z))}{r^{\delta}}\right)\\&=&T(r, f(z))+S(r, f(z)), \quad r \rightarrow \infty , r \notin E_1. \end{eqnarray}
(2.1)

另一方面,根据引理2.1, r \rightarrow \infty 时,我们有

(1+o(1))T(r-|c|, f(z)) \le T(r, f(z+c)) \le (1+o(1))T(r+|c|, f(z)).
(2.2)

结合(2.1)和(2.2)式易知

T(r, f(z+c))=T(r, f(z))+S(r, f), \quad r\rightarrow \infty, r \notin E_1.
(2.3)

由于\varsigma<1,根据引理2.2,存在对数测度有穷的集合E_2 \subset (0, \infty),使得

m\left(r, \frac{f(z+c)}{f(z)}\right)=o\left(\frac{T(r, f)}{r^{1-\varsigma-\varepsilon}}\right), \quad r\rightarrow \infty, r \notin E_2;

m\left(r, \frac{f(z)}{f(z+c)}\right)=o\left(\frac{T(r, f(z+c))}{r^{1-\varsigma-\varepsilon}}\right), \quad r\rightarrow \infty, r \notin E_2.

适当选取\varepsilon >0,满足1-\varsigma-\varepsilon>0时,利用(2.3)式可知,当r\rightarrow \infty r \notin E_1 \cup E_2

m\left(r, \frac{f(z+c)}{f(z)}\right)=S(r, f), \quad m\left(r, \frac{f(z)}{f(z+c)}\right)=S(r, f).
(2.4)

我们注意到

\begin{eqnarray*} |m(r, f(z+c))-m(r, f(z))|&=&\frac{1}{2\pi}\left| \int^{2\pi}_0(\log^{+} \mid f(r{\rm e}^{{\rm i}\theta}+c)\mid -\log^{+} \mid f(r{\rm e}^{{\rm i}\theta})\mid)\, {\rm{d}}\theta \right| \\ &\le& \frac{1}{2\pi} \int^{2\pi}_0\left| \log^{+} \mid f(r{\rm e}^{{\rm i}\theta}+c)\mid -\log^{+} \mid f(r{\rm e}^{{\rm i}\theta})\mid \right| \, {\rm{d}}\theta\\ &\le &\frac{1}{2\pi}\int^{2\pi}_0 \log^{+} \left| \frac{f(r{\rm e}^{{\rm i}\theta}+c)}{f(r{\rm e}^{{\rm i}\theta})}\right| \, {\rm{d}}\theta + \frac{1}{2\pi}\int^{2\pi}_0 \log^{+} \left| \frac{f(r{\rm e}^{{\rm i}\theta})}{f(r{\rm e}^{{\rm i}\theta}+c)}\right|\, {\rm{d}}\theta\\ &=&m\left(r, \frac{f(z+c)}{f(z)}\right)+m\left(r, \frac{f(z)}{f(z+c)}\right).\end{eqnarray*}

将(2.4)式代入上面的不等式中,我们推出

m(r, f(z+c))=m(r, f(z))+S(r, f), \quad r\rightarrow \infty, r \notin E_1 \cup E_2.
(2.5)

E_0=E_1 \cup E_2,显然E_0也为对数测度有穷的集合.由于T(r, f)=m(r, f)+N(r, f),则利用(2.3)式与(2.5)式,我们可知

N(r, f(z+c))=N(r, f(z))+S(r, f), \quad r \rightarrow \infty , r \notin E_0.
(2.6)

对于亚纯函数f(z),我们知道

T(r, f')<2T(r, f)+S(r, f).
(2.7)

从而r充分大时,自然存在T(r, f')<3T(r, f).这意味着\sigma_2(f')=\varsigma<1.根据(2.6)式和(2.7)式,存在对数测度有限的集合E_3 \subset (0, \infty),使得

N(r, f'(z+c))=N(r, f'(z))+S(r, f')=N(r, f'(z))+S(r, f) , \quad r \rightarrow \infty , r \notin E_3.
(2.8)

注意到

N(r, f')=N(r, f)+\overline{N}(r, f).
(2.9)

结合(2.6), (2.8)和(2.9)式可得

\overline{N}(r, f(z+c))=\overline{N}(r, f)+S(r, f), \quad r \rightarrow \infty , r \notin E_0 \cup E_3.

综上所述,引理2.5得证.

3 定理1.1的证明

假设f(z)为方程(1.1)的超越亚纯解,满足\sigma_2(f)=\varsigma<1\Theta(\infty, f)=1.c_i(z)=\frac{a_i(z)}{b(z)}(i=0, 1, \cdots, n),则我们对方程两边同时除以b(z)得到

c_n(z)f(z+n)^{j_n}+c_{n-1}(z)f(z+n-1)^{j_{n-1}}+\cdots+c_1(z)f(z+1)^{j_1}+c_0(z)f(z)^{j_0}=1.
(3.1)

由于a_i(z)(i=0, 1, 2, \cdots, n)b(z)为有理函数,从而

N\left(r, c_i\right)=O(\log r), \quad N\left(r, \frac{1}{c_i}\right)=O(\log r) , \quad (i=0, 1, 2, \cdots, n).

因为f(z)超越,显然

N\left(r, c_i\right)=S(r, f(z)), \quad N\left(r, \frac{1}{c_i}\right)=S(r, f(z)), \quad (i=0, 1, 2, \cdots, n).
(3.2)

利用计数函数的性质,我们不难看出

N\left(r, \frac{1}{c_i(z)f(z+i)^{j_i}}\right) \le N\left(r, \frac{1}{c_i(z)}\right)+N\left(r, \frac{1}{f(z+i)^{j_i}}\right), \quad (i=0, 1, 2, \cdots, n);

N\left(r, \frac{1}{f(z+i)^{j_i}}\right) \le N\left(r, \frac{1}{c_i(z)f(z+i)^{j_i}}\right)+N\left(r, c_i(z)\right), \quad (i=0, 1, 2, \cdots, n).

由这两个不等式,并利用(3.2)式和N\left(r, \frac{1}{f(z+i)^{j_i}}\right)=j_iN\left(r, \frac{1}{f(z+i)}\right),可知

N\left(r, \frac{1}{c_i(z)f(z+i)^{j_i}}\right)=S(r, f(z))+j_iN\left(r, \frac{1}{f(z+i)}\right), \quad (i=0, 1, 2, \cdots, n).
(3.3)

类似地,我们也可得到

T\left(r, c_i(z)f(z+i)^{j_i}\right)=S(r, f(z))+j_iT(r, f(z+i)), \quad (i=0, 1, 2, \cdots, n);

\overline{N}\left(r, c_i(z)f(z+i)^{j_i}\right)=S(r, f(z))+\overline{N}(r, f(z+i)), \quad (i=0, 1, 2, \cdots, n).

利用第一基本定理可知\frac{1}{f}的超级也为\varsigma,故对f\frac{1}{f}都使用引理2.5.则存在E\subset(0, \infty)为对数测度有限集,当r\rightarrow \infty, r \notin E时,有

T(r, f(z+i))=T(r, f(z))+S(r, f(z)), \quad (i=0, 1, 2, \cdots, n);
(3.4)

N\left(r, \frac{1}{f(z+i)}\right)=N\left(r, \frac{1}{f(z)}\right)+S(r, f(z)), \quad (i=0, 1, 2, \cdots, n).
(3.5)

利用(3.3)-(3.5)式,我们得到

\begin{eqnarray*} \overline{\mathop{\lim}\limits_{r \rightarrow \infty }}\frac{N\left(r, \frac{1}{c_i(z)f(z+i)^{j_i}}\right)}{T\left(r, c_i(z)f(z+i)^{j_i}\right)}&=&\overline{\mathop{\lim}\limits_{r \rightarrow \infty }}\frac{j_iN\left(r, \frac{1}{f(z)}\right)+S(r, f(z))}{j_iT(r, f(z))+S(r, f(z))}\\ &=&\overline{\mathop{\lim}\limits_{r \rightarrow \infty }}\frac{N\left(r, \frac{1}{f(z)}\right)}{T(r, f(z))}, \quad (i=0, 1, 2, \cdots, n). \end{eqnarray*}

这意味着

\delta \left(0, c_i(z)f(z+i)^{j_i}\right)=\delta(0, f(z)), \quad (i=0, 1, 2, \cdots, n).
(3.6)

类似地利用引理2.5,我们也可得到

\overline{\mathop{\lim}\limits_{r \rightarrow \infty }}\frac{\overline{N}\left(r, c_i(z)f(z+i)^{j_i}\right)}{T\left(r, c_i(z)f(z+i)^{j_i}\right)}=\frac{1}{j_i} \, \overline{\mathop{\lim}\limits_{r \rightarrow \infty }}\frac{\overline{N}(r, f(z))}{T(r, f(z))}, \quad (i=0, 1, 2, \cdots, n).

注意到条件\Theta(\infty, f)=1等价于\overline{\mathop{\lim}\limits_{r \rightarrow \infty }}\frac{\overline{N}(r, f(z))}{T(r, f(z))}=0,从而

\Theta\left(\infty, c_i(z)f(z+i)^{j_i}\right)=1-\frac{1}{j_i} \, \overline{\mathop{\lim}\limits_{r \rightarrow \infty }}\frac{\overline{N}(r, f(z))}{T(r, f(z))}=1
(3.7)

对于i=0, 1, 2\cdots, n均成立.注意到(3.6)和(3.7)式,对方程(3.1)应用引理2.4,这必然推出

\sum\limits_{i = 0}^n \delta\left(0, c_i(z)f(z+i)^{j_i}\right) \le n.

将(3.6)式代入其中可知(n+1)\delta(0, f) \le n,即\delta(0, f) \le \frac{n}{n+1},从而定理1.1得证.

4 定理1.2的证明

假设f(z)为方程(1.2)的超越亚纯解,满足\sigma_2(f)=\varsigma <1 \Theta(\infty, f)=1.类似于定理1.1的证明,我们将方程(1.2)改写为

c_n(z)f(q^nz)^{j_n}+c_{n-1}(z)f(q^{n-1}z)^{j_{n-1}}+\cdots+c_1(z)f(qz)^{j_1}+c_0(z)f(z)^{j_0}=1,
(4.1)

并且对于i=0, 1, 2, \cdots, n,我们可以推出

T\left(r, c_i(z)f(q^iz)^{j_i}\right)=S(r, f(q^iz))+j_iT(r, f(q^iz)),
(4.2)

N\left(r, \frac{1}{c_i(z)f(q^iz)^{j_i}}\right)=S(r, f(q^iz))+j_iN\left(r, \frac{1}{f(q^iz)}\right),
(4.3)

\overline{N}\left(r, c_i(z)f(q^iz)^{j_i}\right)=S(r, f(q^iz))+\overline{N}(r, f(q^iz)),
(4.4)

其中S(r, f(q^iz))=o(T(r, f(q^iz))).通过几何观察,我们不难发现

T(r, f(qz))=T(r|q|, f(z)) , \, \overline{N}(r, f(qz))=\overline{N}(r|q|, f(z)),
(4.5)

N\left(r, \frac{1}{f(qz)}\right)=N\left(r|q|, \frac{1}{f(z)}\right).
(4.6)

结合(4.2), (4.3), (4.5)和(4.6)式,我们有

\begin{eqnarray*} \overline{\mathop{\lim}\limits_{r \rightarrow \infty }}\frac{N\left(r, \frac{1}{c_i(z)f(q^iz)^{j_i}}\right)}{T\left(r, c_i(z)f(q^iz)^{j_i}\right)}&=&\overline{\mathop{\lim}\limits_{r \rightarrow \infty }}\frac{j_iN\left(|q|^ir, \frac{1}{f(z)}\right)+o(T(|q|^ir, f))}{(j_i+o(1))T(|q|^ir, f)}\\ &=&\overline{\mathop{\lim}\limits_{r \rightarrow \infty }}\frac{N\left(|q|^ir, \frac{1}{f(z)}\right)}{T(|q|^ir, f(z))}\\ &=&\overline{\mathop{\lim}\limits_{r \rightarrow \infty }}\frac{N\left(r, \frac{1}{f(z)}\right)}{T(r, f(z))}, \, (i=0, 1, 2, \cdots, n). \end{eqnarray*}

这意味着

\delta(0, c_i(z)f(q^iz)^{j_i})=\delta(0, f), \, (i=0, 1, 2, \cdots, n).
(4.7)

同理可由条件\Theta(\infty, f)=1,我们得到

\overline{\mathop{\lim}\limits_{r \rightarrow \infty }}\frac{\overline{N}\left(r, c_i(z)f(q^iz)^{j_i}\right)}{T\left(r, c_i(z)f(q^iz)^{j_i}\right)} =\overline{\mathop{\lim}\limits_{r \rightarrow \infty }}\frac{1}{j_i}\frac{\overline{N}(|q|^ir, f(z))}{T(|q|^ir, f(z))}=0, \, (i=0, 1, 2, \cdots, n).

可推出

\Theta(\infty, c_i(z)f(q^iz)^{j_i})=1, \, (i=0, 1, 2, \cdots, n).
(4.8)

注意到(4.7)和(4.8)式,对(4.1)式应用引理2.4,不难推出

\sum\limits_{i = 0}^n \delta\left(0, c_i(z)f(q^iz)^{j_i}\right) \le n.

再次利用(4.7)式,可知(n+1)\delta(0, f) \le n,故\delta(0, f) \le \frac{n}{n+1},从而定理1.2得证.

5 定理1.3的证明

假设f(z)为方程(1.1)的超越亚纯解,并且f有无穷多个的极点.因为a_i (z)\, (i=0, 1, \cdots, n)b(z)均为非零有理函数,从而存在正数M,使得 D=\{z\in {\Bbb C} : |{\rm Re}(z)| \le M, |{\rm Im}(z)| \le M\}包含a_i(z)(i=0, 1, \cdots, n)b(z)的所有零点和极点. f必存在不属于D的极点z_0.如若不然,则f的所有极点必都落在有界区域D中,从而必存在一列极点在D中有聚点,这是矛盾的.记z_0f落在区域D外部的任一极点.我们由方程(1.1),可知

a_n(z_0)f(z_0+n)^{j_n}+\cdots+a_1(z_0)f(z_0+1)^{j_1}+a_0(z_0)f(z_0)^{j_0}=b(z_0).
(5.1)

由此可知,必定存在i_0 \in \{1, 2, \cdots, n\},使得z_0+i_0也是f的极点.

D外的区域分成四个如下的子区域

D_1=\{z \in C :{\rm Re}(z) >M \}, \quad D_2=\{z \in C :{\rm Re}(z) <-M \},

D_3=\{z \in C :{\rm Im}(z) >M \}, \quad D_4=\{z \in C :{\rm Im}(z) <-M \}.

由于z_0 \notin D,从而z_0必属于D_i(i=1, 2, 3, 4)之一.接下来我们分成三种情况讨论.

情况1  假设z_0 \in D_1.D_1的定义,则f的极点z_1:=z_0+i_0也在区域D_1中.将(5.1)式中的z_0替换为z_1,同理可知:存在i_1 \in \{1, 2, \cdots, n\},使得z_2:=z_1+i_1也是f的极点,并且z_2仍在区域D_1中.以此类推,我们可以得到f在区域D_1中的极点列\{z_k\}(z_k=z_{k-1}+i_{k-1}).r_k=|z_k|, k=0, 1, 2, \cdots,我们不难看出r_k单调递增,且趋于无穷.

对于充分大的r,我们可知

N(2r, f)-N(r_0, f) \ge \int^{2r}_r \frac{n\left(t, f\right)}{t}\, {\rm{d}}t \ge n(r, f) \log 2 \ge \left[ \frac{r-r_0}{n}\right] \log 2.
(5.2)

从而

\lambda(\frac{1}{f}) \ge \overline{\mathop{\lim}\limits_{r \rightarrow \infty}}\frac{\log N(2r, f)}{\log 2r} \ge \overline{\mathop{\lim}\limits_{r \rightarrow \infty}} \frac{\log \left[ \frac{r-r_0}{n}\right]+\log \log 2}{\log r+\log 2}=1.

情况2  假设z_0 \in D_3 \cup D_4.此时z_1=z_0+i_0仍然落在D_3 \cup D_4中.从而推出D_3 \cup D_4中存在一列极点\{z_0, z_1, \cdots, z_k, \cdots\}.类似于情况1中的推导,我们也可知\lambda(\frac{1}{f}) \ge 1.

情况3  假设z_0 \in D_2.显然Re(z_0)<-M.将方程(1.1)中的z替换为z_0-n得到

a_n(z_0-n)f(z_0)^{j_n}+\cdots+a_1(z_0-n)f(z_0-n+1)^{j_1}+a_0(z_0-n)f(z_0-n)^{j_0}=b(z_0-n).
(5.3)

由于z_0-n仍在区域D_2中,根据(\ref{eq:e3})式可知:存在i_0' \in \{1, 2, \cdots, n\},使得z_1':=z_0-i_0'也是f的极点,并且z_1'落在区域D_2中.重复上述步骤,我们得到f在区域D_2中的极点列\{z_k'\}(z_k'=z_{k-1}'-i_{k-1}').类似情况1中的推导,我们又可以推出\lambda(\frac{1}{f} )\ge 1.

综上所述,我们知道\lambda(\frac{1}{f} )\ge 1始终成立,从而定理1.3得证.

参考文献

Hayman W K . Meromorphic Functions. Oxford: Clarendon Press, 1964

[本文引用: 1]

Yang C C , Yi H X . Uniqueness Theory of Meromorphic Functions. Dordrecht: Kluwer Academic Publishers Group, 2003

[本文引用: 2]

Chiang Y M , Feng S J .

On the Nevanlinna characteristic of f(z+η) and difference equations in the complex plane

Ramanujan J, 2008, 16: 105- 129

DOI:10.1007/s11139-007-9101-1      [本文引用: 1]

Chen Z X .

Growth and zeros of meromorphic solution of some linear difference equations

J Math Anal Appl, 2011, 373: 235- 241

DOI:10.1016/j.jmaa.2010.06.049      [本文引用: 3]

Gol'dberg A A , Ostrovskii I V . Value Distribution of Meromorphic Functions. Providence, RI: Amer Math Soc, 2008

[本文引用: 1]

Halburd R , Korhonen R , Tohge K .

Holomorphic curves with shift-invariant hyperplane preimages

Transactions of the American Mathematical Society, 2014, 366: 4267- 4298

DOI:10.1090/tran/2014-366-08      [本文引用: 2]

/