带瞬时脉冲的分数阶非自制发展方程解的存在唯一性
Existence and Uniqueness of the Mild Solutions for a Class of Fractional Non-Autonomous Evolution Equations with Impulses
Received: 2017-09-14
Fund supported: |
|
该文利用广义Banach不动点定理研究了一类带迟滞和瞬时脉冲的分数阶非自治发展方程初值问题解的存在性和唯一性,给出其解的迭代序列和误差估计并讨论了其解是连续依赖于初值的.
关键词:
In this paper, we consider a class of fractional non-autonomous evolution equations with impulses and delay. By the generalized Banach fixed point theorem, we obtain some new results on the existence and uniqueness of the mild solution. An explicit iterative scheme for the mild solution and an error estimate of the approximation sequence for the initial value problem are also derived. Moreover, the unique mild solution of the problem is continuously dependent on the initial value.
Keywords:
本文引用格式
朱波, 刘立山.
Zhu Bo, Liu Lishan.
1 引言
本文,我们研究如下的带迟滞和瞬时脉冲的分数阶非自治发展方程初值问题
这里
陈、张和李[12]研究了如下带迟滞的分数阶非自治发展方程
这里
2 预备知识和引理
记
显然
成立,我们称
(1)
(2)
定义2.2
3 主要结论
首先,我们给出本文的假设.
定理3.1 假设条件
对
证 定义算子
显然,算子
由条件
对上面的
这里
对任意的正整数
这里
则由(3.1), (3.2), (3.5), (3.8)式和公式
因此, (3.8)式对
这里
因此,我们选取充分大的正整数
对任意正整数
和(3.12)式可得
另一方面,不失一般性,我们假设
这里
从而,对任意固定的
根据广义Banach压缩映像原理,算子
对任意的
同上面的证明过程一样,我们可得
因此,对任意的
定理3.2 假设条件
则存在一个常数
证 由定义2.2知
类似的,
类似于(3.8)式,根据(2.2), (3.20)式和条件
对任意正整数
由(3.13)和(3.14)式和上面的不等式,对
上面不等式令
由(3.13)和(3.14)式可知
这里
定理3.2证毕.
注3.1 由(3.9)式可知当
4 小结
本文利用广义Banach不动点定理讨论了带迟滞和脉冲的分数阶非自治发展方程解的存在唯一性,给出其解的迭代序列及误差估计.最后讨论了初值扰动时解的扰动问题.可以证明其解是连续依赖于初值的.
参考文献
Existence and exponential stability for neutral stochastic integro-differential equations with impulses driven by a fractional Brownian motion
,DOI:10.1016/j.cnsns.2015.08.014 [本文引用: 1]
Local and global existence of mild solution to an impulsive fractional functional integro-differential equation with nonlocal condition
,DOI:10.1016/j.cnsns.2013.07.025
Existence results for an impulsive neutral stochastic fractional integro-differential equation with infinite delay
,
Existence and uniqueness of mild solution for an impulsive neutral fractional integrodifferential equations with infinity delay
,
Approximate controllability of semilinear evolution equations of fractional order with nonlocal and impulsive conditions via an approximating technique
,
Multipoint BVPs for generalized impulsive fractional differential equations
,
Existence of solutions for semilinear differential equations with not instantaneous impulses
,
Controllability of impulsive fractional order semilinear evolution equations with nonlocal conditions
,
Mittag-Leffler stability analysis of nonlinear fractional-order systems with impulses
,
Existence of solutions for nonlocal impulsive partial functional integrodifferential equations via fractional operators
,
Exponential stability of the exact solutions and the numerical solutions for a class of linear impulsive delay differential equations
,DOI:10.1016/j.cam.2015.01.034 [本文引用: 1]
Study on fractional non-autonomous evolution equations with delay
,DOI:10.1016/j.camwa.2017.01.009 [本文引用: 1]
Existence and uniqueness of the solutions for a class of nonlinear fractional order partial differential equations with delay
,DOI:10.1016/j.camwa.2010.12.034 [本文引用: 3]
Local and global existence of mild solutions for a class of nonlinear fractional reaction-diffusion equations with delay
,DOI:10.1016/j.aml.2016.05.010 [本文引用: 1]
Existence and uniqueness of global mild solutions for a class of nonlinear fractional reaction-diffusion equations with delay
,DOI:10.1016/j.camwa.2016.01.028 [本文引用: 2]
Almost automorphic mild solutions to fractional differential equations
,DOI:10.1016/j.na.2007.10.004 [本文引用: 1]
Controllability of fractional evolution nonlocal impulsive quasilinear delay integro-differential systems
,DOI:10.1016/j.camwa.2011.03.075 [本文引用: 2]
/
〈 | 〉 |