数学物理学报, 2018, 38(6): 1076-1094 doi:

论文

多目标约束向量优化问题的类拉格朗日乘数法

李润鑫,1, 黄辉2, 尚振宏1, 曹宇1, 王红斌,1, 张晶1

Lagrange-Like Multiplier Rules for Weak Approximate Pareto Solutions of Multiobjective Constrained Vector Optimization Problems

Li Runxin,1, Huang Hui2, Shang Zhenhong1, Cao Yu1, Wang Hongbin,1, Zhang Jing1

通讯作者: 王红斌, E-mail: whbin2007@126.com

收稿日期: 2016-12-30  

基金资助: 国家自然科学基金.  11461080
国家自然科学基金.  61562051
国家自然科学基金.  61462052
国家自然科学基金.  61462054
云南省人才培养基金.  KKSY201603016

Received: 2016-12-30  

Fund supported: Supported by the NSFC.  11461080
Supported by the NSFC.  61562051
Supported by the NSFC.  61462052
Supported by the NSFC.  61462054
the Yunnan Provincial Foundation for Personnel Cultivation.  KKSY201603016

作者简介 About authors

李润鑫,E-mail:rxli@kmust.edu.cn , E-mail:rxli@kmust.edu.cn

摘要

文献[21]给出了实希尔伯特空间中含有一个约束条件的向量优化问题的有关帕雷托解的拉格朗日乘数法.该文把文献[21]中的主要结果推广到了含有任意m个约束条件的多目标向量优化问题中,给出了实希尔伯特空间中,以proximal法锥和目标函数的coderivative刻画的多目标约束向量优化问题的类拉格朗日乘数法.

关键词: 向量优化 ; Proximal法锥 ; Coderivative ; ε-帕雷托解 ; 多目标约束向量优化问题

Abstract

In real Hilbert space case, Zheng and Li[21] established a Lagrange multiplier rule for weak approximate Pareto solutions of constrained vector optimization problems with only one constrained multifunction. In this paper, we improve and extend their main results to multiobjective constrained vector optimization problems' cases.

Keywords: Vector optimization ; Proximal normal cone ; Coderivative ; Weak ε-Pareto solution ; Multiobjective constrained vector optimization problem

PDF (408KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

李润鑫, 黄辉, 尚振宏, 曹宇, 王红斌, 张晶. 多目标约束向量优化问题的类拉格朗日乘数法. 数学物理学报[J], 2018, 38(6): 1076-1094 doi:

Li Runxin, Huang Hui, Shang Zhenhong, Cao Yu, Wang Hongbin, Zhang Jing. Lagrange-Like Multiplier Rules for Weak Approximate Pareto Solutions of Multiobjective Constrained Vector Optimization Problems. Acta Mathematica Scientia[J], 2018, 38(6): 1076-1094 doi:

1 引言

众所周知,非光滑约束向量优化问题在经济理论研究,工程设计,管理科学等众多领域中发挥着关键的作用,见文献[1-10].当所讨论的空间是无穷维时,约束向量优化问题的精确解并不一定存在.因此,在无穷维空间中,考虑优化问题的某种意义下的近似解是有必要和有价值的.事实上,以各种方式定义的约束向量优化问题的近似解,以及相关这些解的必要条件已经出现在各种文献中,参见文献[11-21].

因为在有限维空间中,拉格朗日乘数法是求解标量优化问题最优解的重要方法.这也正是许多学者研究约束向量优化问题的拉格朗日乘数法的动机和原因所在,见文献[19-21].在文献[20]中,根据Clarke法锥以及目标多值映射和约束多值映射的coderivatives,并利用fuzzy分离性定理及Ekeland变分原则,郑教授和他的合作者证明了巴拿赫空间中关于弱近似帕雷托解的多目标约束向量优化问题的类拉格朗日乘数法.

受文献[20]中的结果所启发,在文献[21]中,我们考虑实希尔伯特空间中含有一个约束条件的向量优化问题,利用proximal法锥及目标多值映射和约束多值映射的有关proximal法锥的coderivatives,我们给出了该类优化问题的弱近似帕雷托解存在的拉格朗日乘数法,见文献[21].然而,通过进一步地研究,我们发现文献[21]中的结果并不能自然地延拓到含有两个及两个以上约束条件的优化问题上.其中的原因是当$F$被定义为有限个多值映射$F_{i}\ (i=1, 2, \cdots, m)$ ($m>1$)的乘积时, $F$相关于proximate法锥的coderivative不一定包含于每个$F_{i}$关于proximate法锥的coderivative的和中.下面我们结合文献[21]中的结论对以上所述作详细地说明.

$X$, $Y_{0}$$Y$是实希尔伯特空间, $F_{0}: X \rightrightarrows Y_{0}$$F: X \rightrightarrows Y$是闭多值映射, $A$$X$中的闭子集, $K_{0}$$K$分别是空间$Y_{0}$$Y$中的闭凸锥.文献[21]中考虑如下向量优化问题

$K_{0}-\mbox{min}F_{0}(x)\ \ \ \mbox{subject to}\ \ \ F(x)\cap-K\neq\emptyset\ \ \mbox{and}\ \ x\in A, $

并建立了问题(1.1)的弱近似帕雷托解存在的必要条件-拉格朗日乘数法[21].

定理1.1 设$\varepsilon>0$$(\bar{x}, \bar{y}_{0})$$(1.1)$的弱$\varepsilon$ -帕雷托解.假设$\bar{y}\in F(\bar{x})\cap(-K)$.则任意$\lambda>0$,存在

使得

并且

其中$N_{P}(A, a)$$D_{P}^{*}F_{0}(x_{0}, y_{0})$分别表示proximal法锥和$F_{0}$在点$(x_{0}, y_{0})$处的proximal法锥意义下的coderivative (具体定义见预备知识部分).

$X$, $Y_{0}$, $Y_{1}, \cdots, Y_{m}$是实希尔伯特空间, $\Phi_{i} : X \rightrightarrows Y_{i}\ (i=0, 1, \cdots, m)$是闭多值映射, $A$$X$的闭子集,并且$K_{i}$$Y_{i}\ (i=0, 1, \cdots, m)$中的闭凸锥.考虑如下多目标向量优化问题

$\begin{array}{l} K_{0}-\min\Phi_{0}(x), \\ \Phi_{i}(x)\bigcap-K_{i}\neq\emptyset, i=1, \cdots, m, \\ x\in A. \end{array}$

$Y_{0}=\cdots=Y_{m}=\mathbb{R} $, $K_{0}=\cdots=K_{n}=\mathbb{R} _{+}$, $K_{n+1}=\cdots=K_{m}=\{0\}$$\Phi_{i}$都是单值映射时,问题(1.2)将变为实数域上的标量优化问题.本文中用$Z$表示问题(1.2)的可行集,即

事实上,问题(1.1)和(1.2)是等价的.只需要令$Y=Y_{1}\times\cdots\times Y_{m}$, $F_{0}(x)=\Phi_{0}(x)$, $F(x)=\Phi_{1}(x)\times\cdots\times \Phi_{m}(x)$$K=K_{1}\times\cdots\times K_{m}$,则问题(1.2)就变成了问题(1.1).由此,自然地想到这样一个问题:直接利用定理1.1,我们是否能得到问题(1.2)的相应拉格朗日乘数法.也就是,下面的定理1.2是否能通过把问题(1.2)变换成问题(1.1)后,直接应用定理1.1得到.

定理1.2 设$\varepsilon>0$$(\bar{x}, \bar{y}_{0})$$(1.2)$的弱$\varepsilon$ -帕雷托解.假设$\bar{y}_{i}\in\Phi_{i}(\bar{x})\cap(-K_{i})\ (i=1, \cdots, m)$.则对任意的$\lambda>0$,存在$\xi>0$, $\eta>0$,

使得

接下来,我们回答以上疑问.首先把问题(1.2)转换为问题(1.1),设$Y=Y_{1}\times\cdots\times Y_{m}$, $F_{0}(x)=\Phi_{0}(x)$, $F(x)=\Phi_{1}(x)\times\cdots\times \Phi_{m}(x)$, $K=K_{1}\times\cdots\times K_{m}$.根据定理1.1,对任意的$\lambda>0$,存在$y_{0}^{*}\in K_{0}^{+}$, $y^{*}=(c_{1}\times\cdots\times c_{m})\in K^{+}$, $\gamma\in N_{P}(A, a)+\frac{\varepsilon}{\lambda}B_{X}$, $\zeta_{0}\in D_{P}^{*}\Phi_{0}(x_{0}, y_{0})\big(y_{0}^{*}+\frac{\varepsilon}{\lambda}B_{Y_{0}}\big)+\frac{\varepsilon}{\lambda}B_{X}$$\zeta\in D_{P}^{*}(\Phi_{1}\times\cdots\times\Phi_{m})\big(x, (y_{1}, \cdots, y_{m})\big)\big((c_{1}, \cdots, c_{m})+\frac{\varepsilon}{\lambda}B_{Y_{1}\times\cdots\times Y_{m}}\big)+\frac{\varepsilon}{\lambda}B_{X}, $使得$ \zeta_{0}+\zeta+\gamma=0. $显然,关键在于

是否成立.本文预备知识最后部分的例子告诉我们上述包含关系并不一定成立.

受此启发,本文对上述问题进行了研究,并在文中第三部分给出了定理1.2的证明.此外,我们将由定义看到, proximal法锥体现二阶变分性质并且有明显的几何意义,而Clarke法锥和Fréchet法锥只体现一阶变分性质,并且在非光滑的情况下, Clarke法锥难以计算,见文献[19-20, 22-24]及预备知识.因此,在处理实际问题时,我们的结论可能比郑教授们的成果[20]更加有用.

2 预备知识

$X$是实希尔伯特空间,以$B_{X}$$B(x, r)$$X$中的闭单位球和半径为$r$的开球.给定$X$中的闭集$S$和点$s\in S$,我们用$N_{P}(S, s)$表示在点$s$处集合$S$的proximal法锥,即$v\in N_{P}(S, s)$当且仅当存在$\sigma$, $\delta\in (0, +\infty)$,使得

下面关于proximal法锥的引理在我们后面的分析中将多次用到(参见文献[22,命题1.3,命题1.5]).

命题2.1 设$S$是实希尔伯特空间$X$中的闭集, $s\in S$, $v\in X$.则下述结论等价

(ⅰ) $v\in N_{P}(S, s)$;

(ⅱ)存在$\sigma\in (0, +\infty)$,使得

(ⅲ)存在$t\in (0, +\infty)$,使得$d(s+tv, S)=t\| v\| $,其中$d(s+tv, S)$表示点$s+tv$$S$的距离.

$\Phi$是实希尔伯特空间$X$$Y$中的多值映射,用$\mbox{gph}(\Phi)$记它的图,即

$\Phi$是闭的,当且仅当$\mbox{gph}(\Phi)$$X\times Y$中的闭子集.给定$x\in X$$y\in\Phi(x)$,本文用$D_{p}\Phi(x, y): Y\rightrightarrows X$表示映射$\Phi$$(x, y)$处关于proximal法锥的coderivative

假设$\phi:X\rightarrow\mathbb{R} $是一个真下半连续函数, $x\in\mbox{dom}(\phi)$.我们用$\partial_{P}\phi(x)$表示$\phi$在点$x$处的proximal次微分,即如果$\xi\in\partial_{P}\phi(x)$,当且仅当存在$\sigma, \delta\in (0, +\infty)$,满足

特别地,对任意$x\in X$,当$\Phi(x)=[\phi(x), +\infty)$时,容易推出下式成立.

$\Phi$$(\bar{x}, \bar{y})\in \mbox{gph}(\Phi)$处是pseudo-Lipschitz的(参见文献[21, 23-24]),当且仅当存在$L, r\in (0, +\infty)$,使得

$\Phi(x_{1})\cap B(\bar{y}, r)\subset\Phi(x_{2})+\| x_{1}-x_{2}\| LB_{Y}, \ \ \ \forall\ \ x_{1}, x_{2}\in B(\bar{x}, r).$

以下结论见于文献[21,推论2.1].

命题2.2 设$\Phi: X\rightrightarrows Y$是一个闭多值映射,并假设存在$L, r\in (0, +\infty)$满足$(2.1)$式.则对任意的$x\in B(\bar{x}, r)$, $y\in\Phi(x)\cap B(\bar{y}, r)$$\eta\in Y$,有

$K$是实希尔伯特空间$X$中的闭凸锥.可定义$X$上的偏序关系$\leq_{K}$[13]:任意$x_{1}, x_{2} \in X$,

本文用$K^{+}$$K$的对偶锥,即

$\bar{x}\in Z$, $\bar{y}\in\Phi_{0}(\bar{x})$,称$(\bar{x}, \bar{y})$是优化问题(1.2)的一个帕雷托有效解,当且仅当

$\bar{x}\in Z$, $\bar{y}\in\Phi_{0}(\bar{x})$$\mbox{int}(K_{0})\neq\emptyset$的情况下,称点$(\bar{x}, \bar{y})$是问题(1.2)的一个弱帕雷托有效解,当且仅当

当我们假设$\mbox{int}(K_{0})\neq0$时, $(\bar{x}, \bar{y}_{0})$即为问题(1.2)的一个弱帕雷托有效解.以上定义见文献[13-14, 16-17].郑教授及其合作者在文献[20]中定义了问题(1.2)的一种更弱的有效解,他们称之为弱$\varepsilon$ -帕雷托解:如果$\bar{x}\in Z$, $\bar{y}_{0}\in\Phi_{0}(\bar{x})$,并且存在$e\in Y_{0}$满足$\| e\| <\varepsilon$,使得

则称$(\bar{x}, \bar{y}_{0})$是优化问题(1.2)的一个弱$\varepsilon$ -帕雷托解.以下结论给出了优化问题(1.2)存在弱$\varepsilon$ -帕雷托解的必要条件.

命题2.3 设$\Phi_{0}$在可行集$Z$上关于$K_{0}$是下有界的,即存在$b\in Y_{0}$,使得

则任取$\varepsilon>0$,问题$(1.2)$存在弱$\varepsilon$ -帕雷托解.

为证明我们的主要结果,我们需要下面的一些引理.

引理2.1 设$X$是实希尔伯特空间, $A\subset X$, $B=\{(x, \cdots, x)\in X^{n}: x\in A\}$, $s=(\bar{s}, \cdots, \bar{s})\in X^{n}, $$ \bar{s}\in A$.

$N_{P}(B, s)=\{(\eta_{1}, \cdots, \eta_{n})\in X^{n}: \eta_{1}+\cdots+\eta_{n}\in N_{P}(A, \bar{s})\}.$

 由命题2.1 (ⅱ)知,对于$\eta=(\eta_{1}, \cdots, \eta_{n})\in N_{p}(B, s)$,存在$\sigma>0$使得

$\begin{array}[b]{rl}&\langle\eta, s'-s\rangle \leq\sigma\| s'-s\| ^{2}\\ \Leftrightarrow& \langle(\eta_{1}, \cdots, \eta_{n}), (x-\bar{s}\cdots, x-\bar{s})\rangle \leq\sigma\| (x-\bar{s}, \cdots, x-\bar{s})\| ^{2}\\ \Leftrightarrow&\langle \eta_{1}+\cdots+\eta_{n}, x-\bar{s}\rangle\leq \sigma\sqrt{n} \| x-\bar{s}\| ^{2}, \ \ \ \forall \ s'\in B\ {\rm且}\ x\in A. \end{array}$

故由命题2.1 (ⅱ),有

(2.2)式的反包含关系容易由(2.3)式得到.证毕.

引理2.2 设$(E, d)$是距离空间, $A$$E$中的一个完备子集.设$\varphi: E\rightarrow\mathbb{R} \cup\{+\infty\}$是非负下半连续函数, $s_{0}\in A\cap{\rm{dom}}(\varphi)$, $\alpha_{i}\in(0, +\infty)\ (i=0, 1, \cdots)$满足$\sum\limits_{i=0}^{\infty}\alpha_{i}<+\infty$.则对于任意的$\sigma>0$$\varepsilon'>0$,如下结论成立

(ⅰ)存在$s_{i}\in A(i=0, 1, \cdots)$$\hat{s}\in A$,使得

(ⅱ) $\tilde{\varphi}(\cdot):=\varphi(\cdot)+\sigma\sum\limits_{i=0}^{\infty}\alpha_{i}d^{2}(\cdot, s_{i})$$E$上的下半连续函数,并且

 设

显然$W(s_{0})$是非空闭集.任取$x\in W(s_{0})$,有

因此

$W(s_{0})\subset B_{E}\bigg(s_{0}, \sqrt{\frac{1}{\sigma}\alpha_{0}\varphi(s_{0})}\; \bigg) .$

对于$k=0, 1, \cdots$,我们按如下方法归纳地构造点列$s_{k}\in A$和集合$W(s_{k})$:当给定$s_{k}$$W(s_{k})$后,取$s_{k+1}\in W(S_{k})$使得

然后定义

由此易知$k$, $s_{k}\in W(s_{k})$,并且$W(s_{k})$是闭集,此外$W(s_{k+1})\subset W(s_{k})$.下面我们说明当$k\rightarrow \infty$时, $\mbox{diam}W(s_{k})\rightarrow0$.$x\in W(s_{k+1})$,因为

所以

$d(x, s_{k+1})\leq \frac{\varepsilon'}{\sqrt{\sigma}}\alpha_{k}, \ \ \ \forall \ k=0, 1, \cdots.$

故当$k\rightarrow\infty$时, $\mbox{diam}\big(W(s_{k+1})\big)\leq 2\frac{\varepsilon'}{\sqrt{\sigma}}\alpha_{k}\rightarrow0$.此时由康托定理,我们知道存在$\bigcap\limits_{k=0}^{\infty}W(s_{k})$使得$\bigcap\limits_{k=0}^{\infty}W(s_{k})=\{\hat{s}\}$.又注意到$W(s_{k+1})\subset W(s_{k})$,因此我们得到

任取$x\in E$,由三角不等式,可得

由此推出

$\sum\limits_{i=0}^{\infty}\alpha_{i}d(x, s_{i})<+\infty, \ \ \ \forall \ x\in E.$

事实上$\hat{s}$是下半连续函数

$A$上的最小值点.这是因为$\bigcap\limits_{k=0}^{\infty}W(s_{k})=\{\hat{s}\}$,因此任取$x\in A$, $x\neq\hat{s}$,存在$k_{0}\in {\Bbb N}$满足$x\not\in W(s_{k_{0}})$,故由$W(s_{k})$的构造,易知当$k\geq k_{0}$时,有

$k\rightarrow\infty$,则

$\tilde{\varphi}(x) \geq \tilde{\varphi}(\hat{s}).$

结合(2.4)-(2.7)式结论得证.证毕.

进一步,考虑以下两个二元函数

其中$\alpha, \beta, \gamma\in \mathbb{R} $, $e\in X$, $(s_{1i}, s_{2i})\in X\times X (i=0, 1, \cdots)$$\alpha_{i}\in (0, +\infty)(i=0, 1, \cdots)$满足$\sum\limits_{i=0}^{\infty}\alpha_{i}<\infty$.下面的两个引理给出了这两个函数在某些点处的Fréchet导数.

引理2.3 设$X$是实希尔伯特空间, $(\bar{x}_{1}, \bar{x}_{2})\in X\times X$满足$f(\bar{x}_{1}, \bar{x}_{2})\neq0$.$f$在点$(\bar{x}_{1}, \bar{x}_{2})$的某领域内二阶连续可微,并且

 因为$\| \cdot\| $在希尔伯特空间中的任意非零点处是无穷次可微,所以存在$(\bar{x}_{1}, \bar{x}_{2})$的某个领域$U$,使得$f\in C^{2}(U)$.任取$(u_{1}, u_{2})\in X\times X$,由定义知

$\xi=\frac{\alpha \bar{x}_{1}-\beta \bar{x}_{2}-\gamma e} {\| \alpha \bar{x}_{1}-\beta \bar{x}_{2}-\gamma e\| }$,于是

由此

证毕.

引理2.4 设$X$是实希尔伯特空间.假设存在$\eta>0$$(s_{1}, s_{2})\in X\times X$满足

$\sum\limits_{i=0}^{\infty}\alpha_{i}\| (x_{1}, x_{2})-(s_{1i}, s_{2i})\| <+\infty.$

则对任意的$(x_{1}, x_{2})\in B((s_{1}, s_{2}), \eta)$,有

$g'(x_{1}, x_{2})=\bigg(\sum\limits_{i=0}^{\infty}2\alpha_{i}(x_{1}-s_{1i}), \sum\limits_{i=0}^{\infty}2\alpha_{i}(x_{2}-s_{2i})\bigg), $

并且

$g''(x_{1}, x_{2})=\sum\limits_{i=0}^{\infty}2\alpha_{i}(I, I),$

其中$I$$X$上的恒等映射.

 设$(x_{1}, x_{2})\in B((s_{1}, s_{2}), \eta)$$\delta:=\eta-\| (x_{1}, x_{2})-(s_{1}, s_{2})\| $.则对任意的$(u_{1}, u_{2})\in B((0, 0), \delta)$,有

利用(2.8)式及三角不等式性,可得

再结合$X\times X$的完备性,推出

我们令$(\xi_{1}, \xi_{2}):= (\sum\limits_{i=0}^{\infty}2\alpha_{i}(x_{1}-s_{1i}), \sum\limits_{i=0}^{\infty}2\alpha_{i}(x_{2}-s_{2i}))$,故

这说明(2.9)式成立. (2.10)式容易由(2.9)式简单推得.证毕.

在这部分的最后,我们给出一个例子对第一部分最后的疑问加以说明.

例2.1 设$F_{1}, F_{2}: \mathbb{R} \rightrightarrows\mathbb{R} $定义如下

由命题2.1 (ⅲ)易知

并且对任意的$v\in\mathbb{R} $, $D_{p}^{*}F_{2}(0, 0)(v)$满足如下性质

(ⅰ)若$v>0$,则$D_{p}^{*}F_{2}(0, 0)(v)=\emptyset$.

(ⅱ)若$v\leq0$$u\in D_{p}^{*}F_{2}(0, 0)(v)$,则$u\leq0$.

下面说明$1\in D_{p}^{*}(F_{1}\times F_{2})\big(0, (0, 0)\big)\big(\frac{1}{4}, -\frac{1}{4}\big)$.事实上,对任意的$x\in\mathbb{R} $$(y_{1}, y_{2})\in F_{1}(x)\times F_{2}(x)$,容易得到

(ⅲ)如果$x>0$,则

(ⅳ)如果$x\leq0$,则

由(ⅲ), (ⅳ)和命题2.1 (ⅱ),我们知道

因此, $1\not\in D_{p}^{*}F_{1}(0, 0)(\frac{1}{4})+D_{p}^{*}F_{2}(0, 0)(-\frac{1}{4})=\emptyset$.

并且

此例说明定理1.1不能自然地延拓到有多个约束的优化问题中.

3 主要结论

这一节的主要目标是给出定理1.2的证明.证明的思想借鉴了文献[24-25]中Borwein和Presis非光滑变分原则及文献[21]中的定理1.1的证明思想.

在整个这部分中,我们假设$X$, $Y$, $Y_{0}$, $Y_{1}, \cdots, Y_{m}$是实希尔伯特空间, $A$$X$中的闭子集, $K_{i}$$Y_{i}\ (i=0, 1, \cdots, m)$中的闭凸锥,以$\langle\cdot, \cdot\rangle$表示内积,并设$\Phi_{i} : X\rightrightarrows Y_{i}\ (i=0, 1, \cdots, m)$是闭多值映射.

定义空间$X\times\prod\limits_{i=0}^{m}Y_{i}$的内积和范数为:任取$(x_{1}, y_{0}^{(1)}, \cdots, y_{m}^{(1)})$, $(x_{2}, y_{0}^{(2)}, \cdots, y_{m}^{(2)})\in X\times\prod\limits_{i=0}^{m}Y_{i}$,

定理3.1 设$\varepsilon>0$, $(\bar{x}, \bar{y}_{0})$是多目标优化问题$(1.2)$的一个弱$\varepsilon$-帕雷托解.假设$\bar{y}_{i}\in\Phi_{i}(\bar{x})\cap(-K_{i})\ (i=1, \cdots, m)$.则对任意的$\lambda>0$,存在

$\zeta_{m+1}\in N_{P}(A, x_{m+1})+\frac{\varepsilon}{\lambda}B_{X}$,使得$\sum\limits_{i=0}^{m+1}\zeta_{i}=0$

$\begin{equation}\frac{1}{64(m+3)(m+1)^{2}}-(\frac{\varepsilon}{\lambda})^{2} \leq \sum\limits_{i=0}^{m}(\| \zeta_{i}\| ^{2}+\| c_{i}\| ^{2}) \leq\frac{1}{32(m+1)}+\frac{1}{2}(\frac{\varepsilon}{\lambda})^{2}.\end{equation}$

 因为$(\bar{x}, \bar{y}_{0})$是优化问题(1.2)的弱$\varepsilon$ -帕雷托解,所以存在$e\in Y_{0}$满足$\| e\| <\varepsilon$,使得

$\begin{equation}\Phi_{0}(Z)\cap(\bar{y}_{0}+e-K_{0})=\emptyset, \end{equation}$

其中$Z:=A\cap(\bigcap\limits_{i=1}^{m}\Phi_{i}^{-1}(-K_{i}))$.考虑积空间$X\times \prod\limits_{i=0}^{m}Y_{i}$,并设

定义$\varphi: E\times E\rightarrow\mathbb{R} $

$a:=(\bar{x}, \bar{y}_{0}, \cdots, \bar{y}_{m})$, $s:=(a, \cdots, a)\in E$$\textbf{s}_{0}:=(s, s)$.显然有$\textbf{s}_{0}\in B_{1}\times B_{2}$,并且$\varphi(\textbf{s}_{0})=\frac{1}{8(m+1)^{\frac{3}{2}}}\| \tilde{e}\| =\frac{1}{8(m+1)}\| e\| $.

$\sigma:=\frac{\varepsilon}{2\lambda^{2}(m+1)}$, $\alpha_{i}:=\frac{1}{2^{i+2}} (i=0, 1, \cdots)$$0<\varepsilon'<\sqrt{\frac{\varepsilon}{2(m+1)}}$.则由引理2.2,存在$\hat{\textbf{s}}=(\hat{s}_{1}, \hat{s}_{2}) \in B_{1}\times B_{2}$$\textbf{s}_{i}=(s_{1i}, s_{2i})\in B_{1}\times B_{2}\ (i=1, \cdots, )$,使得

$\begin{equation} \hat{\textbf{s}}\in B_{E\times E}\bigg(\textbf{s}_{0}, \lambda\sqrt{\frac{\| e\| }{\varepsilon}}\bigg) \subset B_{E\times E}(\textbf{s}_{0}, \lambda), \end{equation}$

$\begin{equation}\| \hat{\textbf{s}}-\textbf{s}_{k+1}\| \leq\frac{\varepsilon'}{\sqrt{\sigma}}\cdot\frac{1}{2^{k+2}} \leq \lambda, \ \ \ \forall \ k=0, 1, \cdots, \end{equation}$

且有

$ \begin{equation}\tilde{\varphi}(\textbf{x}):=\varphi(\textbf{x})+\frac{\varepsilon}{2\lambda^{2}(m+1)} \sum\limits_{i=0}^{\infty}\frac{\| \textbf{x}-\textbf{s}_{i}\| ^{2}}{2^{i+2}} \geq \tilde{\varphi}(\hat{\textbf{s}}), \ \ \ \forall \ \textbf{x}\in B_{1}\times B_{2}.\end{equation}$

下面我们用反证法证明$\varphi(\hat{\textbf{s}})\neq 0$.为此,假设$\hat{s}_{1}=\hat{s}_{2}+\tilde{e}$.$B_{1}$$B_{2}$的定义知,存在$x\in A_{m+1}$,使得

于是由$A_{m+1}$的构造知,存在$\tilde{x}\in A$$k_{i}\in K_{i}$$ (i=0, \cdots, m)$,满足

由此说明$\bar{y}_{0}+e-k_{0}\in \Phi_{0}(\tilde{x})\cap(\bar{y}_{0}+e-k_{0})$$\bar{y}_{i}-k_{i}\in \Phi_{i}(\tilde{x})\cap(\bar{y}_{i}-k_{i})\subset \Phi_{i}(\tilde{x})\cap(-k_{i})$$ (i=1, \cdots, m)$成立.故

所以

和(3.2)式矛盾.因此$\varphi(\hat{\textbf{s}})\neq 0$.

容易由(3.4)式得到$\sum\limits_{i=0}^{\infty}\frac{\| \hat{\textbf{s}}-\textbf{s}_{i}\| }{2^{i+2}}<+\infty$.故由引理2.3和引理2.4可知$\tilde{\varphi}$在点$\hat{\textbf{s}}$的某领域内二阶连续可微,即存在领域$U:=B_{E\times E}(\hat{\textbf{s}}, r)$和常数$\rho>0$使得

于是,在点$\textbf{z}\in (B_{1}\times B_{2})\cap U$$\tilde{\varphi}$能二阶泰勒展开,并根据(3.5)式可知

其中$\theta$$\textbf{z}$$\hat{\textbf{s}}$连线上的某个点.这表明

$\begin{equation} -\tilde{\varphi}'(\hat{\textbf{s}})\in N_{p}(B_{1}\times B_{2}, \hat{\textbf{s}}) =N_{P}(B_{1}, \hat{s}_{1})\times N_{P}(B_{2}, \hat{s}_{2}).\end{equation}$

又根据引理2.3和引理2.4,我们知道

$ \begin{eqnarray}\tilde{\varphi}'(\hat{\textbf{s}})&=&\bigg(\frac{1}{8(m+1)^{\frac{3}{2}}}\cdot \frac{\hat{s}_{1}-\hat{s}_{2}-\tilde{e}}{\| \hat{s}_{1}-\hat{s}_{2}-\tilde{e}\| } +\frac{\varepsilon}{2\lambda^{2}(m+1)}\bigg(\frac{\hat{s}_{1}-s}{2}+\sum\limits_{i=1}^{\infty}\frac{\hat{s}_{1}-s_{1i}}{2^{i+1}}\bigg), \\ &&-\frac{1}{8(m+1)^{\frac{3}{2}}}\cdot \frac{\hat{s}_{1}-\hat{s}_{2}-\tilde{e}}{\| \hat{s}_{1}-\hat{s}_{2}-\tilde{e}\| } +\frac{\varepsilon}{2\lambda^{2}(m+1)} \bigg(\frac{\hat{s}_{2}-s}{2}+\sum\limits_{i=1}^{\infty}\frac{\hat{s}_{2}-s_{2i}}{2^{i+1}}\bigg)\bigg). \end{eqnarray}$

而(3.3)和(3.4)式表明

于是,由(3.6)和(3.7)式得

$\begin{equation} \frac{1}{8(m+1)^{\frac{3}{2}}}\cdot \frac{\hat{s}_{1}-\hat{s}_{2}-\tilde{e}}{\| \hat{s}_{1}-\hat{s}_{2}-\tilde{e}\| } \in N_{P}(B_{2}, \hat{s}_{2})+\frac{\varepsilon}{2\lambda(m+1)}B_{E}.\end{equation}$

注意到$\hat{s}_{1}\in B_{1}$, $\hat{s}_{2}\in B_{2}$,则存在$\bar{s}_{i}=(x_{i}, y_{i, 0}, \cdots, y_{i, m})\in A_{i}\ (i=0, \cdots, m)$$\bar{s}=(x_{m+1}, y_{m+1, 0}, \cdots, y_{m+1, m})\in A_{m+1}$,使得

于是结合(3.3)式,可得

$\begin{equation}\sum\limits_{i=0}^{m}\| x_{i}-\bar{x}\| ^{2} +\sum\limits_{i=0}^{m}\sum\limits_{j=0}^{m}\| y_{i, j}-\bar{y}_{j}\| ^{2} +(m+1)(\| x_{m+1}-\bar{x}\| ^{2} +\sum\limits_{j=0}^{m}\| y_{m+1, j}-\bar{y}_{j}\| ^{2}) <\lambda^{2}. \end{equation}$

接下来,令$t:=\| \hat{s}_{1}-\hat{s}_{2}-\tilde{e}\| $,则(3.8)式表明

$ \begin{eqnarray}&&-\frac{1}{8(m+1)^{\frac{3}{2}}t}(\bar{s}_{0}-\bar{s}-\bar{e}, \cdots, \bar{s}_{m}-\bar{s}-\bar{e})\\&=&-\frac{1}{8(m+1)^{\frac{3}{2}}t}\big((x_{0}-x_{m+1}, y_{0, 0}-y_{m+1, 0}-e, y_{0, 1}-y_{m+1, 1}, \cdots, y_{0, m}-y_{m+1, m}), \\&& \cdots, (x_{m}-x_{m+1}, y_{m, 0}-y_{m+1, 0}-e, y_{m, 1}-y_{m+1, 1}, \cdots, y_{m, m}-y_{m+1, m})\big)\\&& \in N_{P}(A_{0}, \bar{s}_{0})\times \cdots \times N_{P}(A_{m}, \bar{s}_{m})+\frac{\varepsilon}{2\lambda(m+1)}B_{E}. \end{eqnarray}$

再由$A_{i}$的定义,我们又能得到当$0\leq i\leq m$时,有

这和(3.10)式推出存在

满足

$\begin{eqnarray}&&\sum\limits_{i=0}^{m}\bigg\| \frac{1}{8(m+1)^{\frac{3}{2}}t}(x_{i}-x_{m+1})+\xi_{i}\bigg\| ^{2} +\bigg\| \frac{1}{8(m+1)^{\frac{3}{2}}t}(y_{0, 0}-y_{m+1, 0}-e)+\eta_{0}\bigg\| ^{2}\\&&{}+\sum\limits_{i=1}^{m}\bigg(\bigg\| \frac{1}{8(m+1)^{\frac{3}{2}}t}(y_{i, i}-y_{m+1, i})+\eta_{i}\bigg\| ^{2} +\bigg\| \frac{1}{8(m+1)^{\frac{3}{2}}t}(y_{i, 0}-y_{m+1, 0}-e)\bigg\| ^{2}\bigg)\\&&{}+\sum\limits_{i, k=0, i\neq k}^{m}\bigg\| \frac{1}{8(m+1)^{\frac{3}{2}}t}(y_{i, k}-y_{m+1, k})\bigg\| ^{2}< \bigg(\frac{\varepsilon}{2\lambda(m+1)}\bigg)^{2}. \end{eqnarray} $

应用引理2.1得

这和(3.8)式表明存在

使得

$\begin{equation}\frac{1}{8(m+1)^{\frac{3}{2}}t}\sum\limits_{i=0}^{m}(\bar{s}_{i}-\bar{s}-\bar{e})-(\omega_{0}+\cdots+\omega_{m}) \in N_{P}(A_{m+1}, \bar{s}).\end{equation}$

因为

所以由(3.12)式可得

$\begin{equation}\frac{1}{8(m+1)^{\frac{3}{2}}t}\sum\limits_{i=0}^{m}(\bar{s}_{i}-\bar{s}-\bar{e}) \in N_{P}(A_{m+1}, \bar{s})+\frac{\varepsilon}{2\lambda(m+1)^\frac12}B_{E}.\end{equation}$

通过$A_{m+1}$的定义,容易证明如下结论

这又和(3.13)式表明存在

使得

$\begin{eqnarray}&&\bigg\| \frac{1}{8(m+1)^{\frac{3}{2}}t}\sum\limits_{i=0}^{m}(x_{i}-x_{m+1})-\zeta\bigg\| ^{2}+\bigg\| \frac{1}{8(m+1)^{\frac{3}{2}}t}\sum\limits_{i=0}^{m}(y_{i, 0}-y_{m+1, 0}-e)-c_{0}'\bigg\| ^{2}\\&&+\bigg\| \frac{1}{8(m+1)^{\frac{3}{2}}t}\sum\limits_{i=0}^{m}(y_{i, 1}-y_{m+1, 1})-c_{1}'\bigg\| ^{2}+\cdots+\bigg\| \frac{1}{8(m+1)^{\frac{3}{2}}t}\sum\limits_{i=0}^{m}(y_{i, m}-y_{m+1, m})-c_{m}'\bigg\| ^{2}\\& <&\frac{1}{4(m+1)}\cdot\bigg(\frac{\varepsilon}{\lambda}\bigg)^{2}. \end{eqnarray}$

又注意到

再结合(3.11)和(3.14)式,可知

成立.因此

$\xi_{i}':=-\frac{1}{8(m+1)^{\frac{3}{2}}t}(x_{i}-x_{m+1})\ (0\leq i\leq m)$$\xi_{m+1}':=\frac{1}{8(m+1)^{\frac{3}{2}}t}\sum\limits_{i=0}^{m}(x_{i}-x_{m+1})$,则由(3.11)式和(3.14)式得

并且

又记$\zeta_{i}:=\sqrt{m+1}\xi_{i}', \ c_{i}:=\sqrt{m+1}c_{i}' \ \ (i=0, \cdots, m)$$\zeta_{m+1}:=\sqrt{m+1}\xi_{m+1}'$,则

至此,由(3.9)式可知我们还需要说明(3.1)式成立即可.下面我们证明(3.1)式.首先注意到$\frac{\| \hat{s}_{1}-\hat{s}_{2}-\tilde{e}\| }{t}=1$,即有

$ \begin{eqnarray}&&\frac{1}{t^{2}}\bigg(\sum\limits_{i=0}^{m}\| x_{i}-x_{m+1}\| ^{2} +\sum\limits_{i=0}^{m}\| y_{i, 0}-y_{m+1, 0}-e\| ^{2} +\sum\limits_{i=1}^{m}\| y_{i, i}-y_{m+1, i}\| ^{2}\\&& +\sum\limits_{i=0, k=1, i\neq k}^{m}\| y_{i, k}-y_{m+1, k}\| ^{2}\bigg) =1. \end{eqnarray}$

类似地,因为

并且

所以对于$(1\leq k\leq m)$时,有

成立.这说明

此时,应用(3.11), (3.14)和(3.15)式可得

进一步,因为

由此, (3.14)和(3.15)式表明(3.1)式的第二个不等式成立.证毕.

我们知道拉格朗日乘数法是求解条件极值问题的有效方法.当$X=Y_{0}=\cdots=Y_{m}=\mathbb{R} $, $K_{0}=K_{1}=\cdots=K_{m}={\Bbb R_{+}}$$\Phi_{i}\ (i=0, \cdots, m)$是pseudo-Lipschitz映射时,拉格朗日乘数法能表示为:如果$\bar{x}$是优化问题(1.2)的解,则存在$\lambda_{i}\in[0, 1]\ (i=0, \cdots, m)$,使得

其中$\partial\Phi_{i}(\bar{x})$$N(A, \bar{x})$分别表示$\Phi_{i}$在点$\bar{x}$处的Clarke次微分和Clarke法锥.如果$\Phi_{i}\ (i=0, \cdots, m)$是光滑的,则Clarke次微分能用导数代替.因为proximal次微分体现二阶变分性质,所以就算是光滑标量优化问题也不能得到其关于proximal次微分的拉格朗日乘数法[21].为此,文献[21]给出了问题(1.1)的$\varepsilon$-proximal拉格朗日点和fuzzy proximal拉格朗日点的定义.自然地,这两个定义能推广到多目标优化问题(1.2).

定义3.1 设$\varepsilon>0$, $\bar{x}$是问题$(1.2)$的一个可行点,并且$\bar{y}_{0}\in \Phi_{0}(\bar{x})$.$(\bar{x}, \bar{y}_{0})$

(ⅰ)问题$(1.2)$$\varepsilon$-proximal拉格朗日点,当且仅当$\bar{y}_{i}\in\Phi_{i}(\bar{x})\cap(-K_{i})\ (i=1, \cdots, m)$,且存在$x_{0}\in B(\bar{x}, \varepsilon)$, $y_{0}\in\Phi_{0}(x_{0})\cap B(\bar{y}_{0}, \varepsilon)$, $x_{i}\in B(\bar{x}, \varepsilon)$, $y_{i}\in\Phi_{i}(x_{i})\cap B(\bar{y}_{i}, \varepsilon)\ (i=1, \cdots, m)$, $a\in A\cap B(\bar{x}, \varepsilon))$$c_{i}\in K_{i}^{+}\ (i=1, \cdots, m)$满足以下性质

(ⅱ)问题$(1.2)$的fuzzy proximal拉格朗日点,当且仅当对任意的$\varepsilon>0$, $(\bar{x}, \bar{y}_{0})$都是问题$(1.2)$$\varepsilon$-proximal拉格朗日点.

定理3.2 设$\Phi_{0}$在可行集$Z$上关于序锥$K_{0}$下有界.则下述结论有一个成立.

(ⅰ)对任意的$\varepsilon>0$,存在$\bar{x}\in Z$$\bar{y}_{0}\in\Phi_{0}(\bar{x})$,使得$(\bar{x}, \bar{y}_{0})$是问题$(1.2)$的一个$\varepsilon$-帕雷托解,并且$(\bar{x}, \bar{y}_{0})$是问题$(1.2)$的一个$\varepsilon$-proximal拉格朗日点.

(ⅱ)对任意的$\varepsilon>0$,存在$\bar{x}\in Z$$\bar{y}_{0}\in \Phi_{0}(\bar{x})$,使得$(\bar{x}, \bar{y}_{0})$是问题$(1.2)$的一个$\varepsilon$ -帕雷托解,并且存在$x_{0}\in B(\bar{x}, \varepsilon)$, $y_{0}\in\Phi_{0}(x_{0})\cap B(\bar{y}_{0}, \varepsilon)$, $x_{i}\in B(\bar{x}, \varepsilon)$, $y_{i}\in \Phi_{i}(x_{i})\cap (-K_{i}+\varepsilon B_{Y_{i}})\ (1\leq i\leq m)$, $a\in A\cap B(\bar{x}, \varepsilon))$,

满足

 由命题2.3得,任意$n\in {\Bbb N}$,存在$\bar{x}_{n}\in Z$$\bar{y}_{n}\in\Phi_{0}(\bar{x}_{n})$,使得$(\bar{x}_{n}, \bar{y}_{n})$是问题(1.2)的$\frac{1}{n^{2}}$ -帕雷托解.应用定理3.1 (取$\varepsilon=\frac{1}{n^{2}}$, $\lambda=\frac{1}{n}$),存在$x_{0}(n)\in B(\bar{x}_{n}, \frac{1}{n})$, $y_{0}(n)\in \Phi_{0}(x_{0}(n))\cap B(\bar{y}_{n}, \frac{1}{n})$, $x_{i}(n)\in B(\bar{x}_{n}, \frac{1}{n})$$y_{i}(n)\in \Phi_{i}(x_{i}(n))\cap (-K_{i}+\frac{1}{n}B_{Y_{i}})\ (1\leq i\leq m)$, $x_{m+1}(n)\in A\cap B(\bar{x}_{n}, \frac{1}{n})$, $c_{i}(n)\in K_{i}^{+}$,

$ \begin{equation}\zeta_{i}(n)\in D_{P}^{*}\Phi_{i}(x_{i}(n), y_{i}(n))(c_{i}(n)+\frac{1}{n}B_{Y_{i}})+\frac{1}{n}B_{X}\ \ \ 0\leq i\leq m\end{equation} $

$\begin{equation} \zeta_{m+1}(n)\in N_{P}(A, x_{m+1}(n))+\frac{1}{n}B_{X}, \end{equation}$

使得$\sum\limits_{i=0}^{m+1}\zeta_{i}(n)=0$

$\begin{equation}\frac{1}{64(m+3)(m+1)^{2}}-\frac{1}{n^{2}} \leq \sum\limits_{i=0}^{m}(\| \zeta_{i}(n)\| ^{2}+\| c_{i}(n)\| ^{2}) \leq\frac{1}{32(m+1)}+\frac{1}{2n^{2}}\end{equation}$

成立.对任意的$n\in {\Bbb N}$,设$r_{n}:=\sum\limits_{i=0}^{m}\| c_{i}(n)\| $.我们首先考虑$\{r_{n}\}$不收敛到$0$的情况.不失一般性,假设存在$r$,使得$r_{n}>r, \forall \ n\in{\Bbb N}$ (如果必要可取子列).设$\tilde{c}_{i}(n):=\frac{c_{i}(n)}{r_{n}}$.$\tilde{c}_{i}(n)\in K_{i}^{+}$, $\sum\limits_{i=0}^{m}\| \tilde{c}_{i}(n)\| =1\ (n\in {\Bbb N})$,结合(3.16)-(3.18)式,知

由此可得(ⅰ)成立.下面假设$r_{n}\rightarrow0$.则由(3.18)式,对充分大的$n$,有$l_{n}:=\sum\limits_{i=0}^{m}\| \zeta_{i}(n)\| \geq \frac{1}{16(m+1)(m+3)}$.应用(3.16)-(3.18)式,得

于是(ⅱ)成立.证毕.

$\Phi_{i}\ (0\leq i\leq m)$是pseudo-Lipschitz映射,由命题2.2和定理3.3容易推出以下结论.

推论3.1 设$\Phi_{0}$在可行集$Z$上关于序锥$K_{0}$下有界.假设$\Phi_{i}$都是pseudo-Lipschitz映射.则定理$3.3$中的(i)成立.即对任意的$\varepsilon>0$,存在$\bar{x}\in Z$$\bar{y}_{0}\in\Phi_{0}(\bar{x})$,使得$(\bar{x}, \bar{y}_{0})$是问题$(1.2)$的一个$\varepsilon$-proximal拉格朗日点.

注3.1 如果$(\bar{x}, \bar{y}_{0})$是问题$(1.2)$的一个帕雷托有效解,则$\Phi_{0}(Z)\cap(\bar{y}_{0}-K_{0})=\{\bar{y}_{0}\}$,故

这说明对于任意的$\varepsilon'>0$, $(\bar{x}, \bar{y}_{0})$都是问题$(1.2)$$\varepsilon'$ -帕雷托解.因此,依据定理$3.3 $和推论$3.4$的证明思想,容易推出问题$(1.2)$的每一个帕雷托解都是该问题的fuzzy proximal拉格朗日点.

注3.2 当int$(K_{0})\neq0$,通常会考虑问题$(1.2)$的弱帕雷托解.假设$(\bar{x}, \bar{y}_{0})$是问题$(1.2)$的弱帕雷托解,则

因为$K_{0}$是凸锥, int$(K_{0})+K_{0}\subset {\rm int}(K_{0})$,所以任取$e\in-{\rm int}(K_{0})$,有$\Phi_{0}(Z)\cap(\bar{y}_{0}+e-K_{0})=\emptyset$.说明,问题$(1.2)$的任意弱帕雷托解都是它的弱$\varepsilon'$ -帕雷托解(任意$\varepsilon'>0$).因此,问题$(1.2)$的每一个帕雷托解也都是它的fuzzy proximal拉格朗日点.

参考文献

Aubin J P , Frandowska H . Set-valued Analysis. Boston: Birkhauser, 1990

[本文引用: 1]

Bao T Q , Mordukhovich B S .

Variational principles for set-valued mappings with applications to multiobjective optimization

Control Cybern, 2007, 36: 531- 562

URL    

Bergstresser K , Yu P L .

Domination structures and multicriteria problems in N-person games

Theory Decis, 1977, 8 (1): 5- 48

DOI:10.1007/BF00133085     

Clarke F H . Optimization and Nonsmooth Analysis. New York: Wiley, 1983

Gotz A , Jahn J .

The Lagrange multiplier rule in set-valued optimization

SIAM J Optim, 1999, 10: 331- 344

URL    

Gopfert A , Riahi H , Tamme C , Zalinescu C . Variational Methods in Partially Ordered Spaces. New York: Springer, 2003

Jahn J . Vector Optimization:Theory, Applications and Extensions. Berlin: Springer-Verlag, 2004

Luc D T . Theory of Vector Optimization. Berlin: Springer, 1989

Qu S J , Goh M , Souza R D , Wang T N .

Proximal point algorithms for convex multi-criteria optimization with applications to supply chain risk management

J Optim Theory Appl, 2014, 163: 949- 956

DOI:10.1007/s10957-014-0540-8     

Sun X K , Long X J , Chai Y .

Sequential optimality conditions for fractional optimization with applications to vector optimization

J Optim Theory Appl, 2015, 164: 479- 499

DOI:10.1007/s10957-014-0578-7      [本文引用: 1]

Bao T Q , Mordukhovich B S .

Relative Pareto minimizers for multiobjective problems:existence and optimality conditions

Math Program, 2011, 122: 301- 347

URL     [本文引用: 1]

Bao T Q, Mordukhovich B S. Extended Pareto optimality in multiobjective problem//Ansari Q H, Yao J C, et al. Recent Advances in Vector Optimization, 2011: 467-515

Bao T Q , Mordukhovich B S .

Necessary nondomination conditions in set and vector optimization with variable ordering structures

J Optim Theory Appl, 2014, 162: 350- 370

DOI:10.1007/s10957-013-0332-6      [本文引用: 2]

Helbig S , Pateva D .

On several concepts for ε-efficiency

OR Spectrum, 1994, 16: 179- 186

DOI:10.1007/BF01720705      [本文引用: 1]

Isac G .

Pareto optimization in infinite-dimensional spaces:The importance of nuclear cones

J Math Anal Appl, 1994, 182: 393- 404

DOI:10.1006/jmaa.1994.1093     

Jameson G . Ordered Linear Spaces. New York: Springer, 1970

[本文引用: 1]

Guo X L , Li S J .

Optimality conditions for vector optimization problems with difference of convex maps

J Optim Theory Appl, 2014, 162: 821- 844

DOI:10.1007/s10957-013-0327-3      [本文引用: 1]

Zhu Q J .

Hamiltonian necessary conditions for a multiobjective optimal control problem with endpoint constraints

SIAM J Control Optim, 2000, 39: 97- 112

DOI:10.1137/S0363012999350821     

Zheng X Y , Ng K F .

The Lagrange multilizer rule for multifuntions in Banach spaces

SIAM J Optim, 2006, 17: 1154- 1175

[本文引用: 2]

Zheng X Y , Ng K F .

A unified separation theory for closed sets in a Banach space and optimality conditions for vector optimization

SIAM J Optim, 2011, 21: 886- 911

DOI:10.1137/100811155      [本文引用: 5]

Zheng X Y , Li R X .

Lagrange multiplier rules for weak approximate pareto solutions of constrained vector optimization problems in Hilbert Spaces

J Optim Theory Appl, 2014, 162: 665- 679

DOI:10.1007/s10957-012-0259-3      [本文引用: 16]

Clarke F H , Ledyaev Y S , Stern R J , Wolenski P R . Nonsmooth Analysis and Control Theory. New York: Springer, 1998

[本文引用: 2]

Rockafellar R T , Wets R J B . Variational Analysis. Berlin: Springer, 1998

[本文引用: 1]

Schirotzek W . Nonsmooth Analysis. Berlin: Springer, 2007

[本文引用: 3]

Borwein J M , Preiss D .

A smooth variational principle with applications to subdifferentiability and to differentiability of convex functions

Trans Amer Math Soc, 1987, 303: 517- 527

DOI:10.1090/S0002-9947-1987-0902782-7      [本文引用: 1]

/