1 |
Aubin J P , Frandowska H . Set-valued Analysis. Boston: Birkhauser, 1990
|
2 |
Bao T Q , Mordukhovich B S . Variational principles for set-valued mappings with applications to multiobjective optimization. Control Cybern, 2007, 36: 531- 562
|
3 |
Bergstresser K , Yu P L . Domination structures and multicriteria problems in N-person games. Theory Decis, 1977, 8 (1): 5- 48
doi: 10.1007/BF00133085
|
4 |
Clarke F H . Optimization and Nonsmooth Analysis. New York: Wiley, 1983
|
5 |
Gotz A , Jahn J . The Lagrange multiplier rule in set-valued optimization. SIAM J Optim, 1999, 10: 331- 344
|
6 |
Gopfert A , Riahi H , Tamme C , Zalinescu C . Variational Methods in Partially Ordered Spaces. New York: Springer, 2003
|
7 |
Jahn J . Vector Optimization:Theory, Applications and Extensions. Berlin: Springer-Verlag, 2004
|
8 |
Luc D T . Theory of Vector Optimization. Berlin: Springer, 1989
|
9 |
Qu S J , Goh M , Souza R D , Wang T N . Proximal point algorithms for convex multi-criteria optimization with applications to supply chain risk management. J Optim Theory Appl, 2014, 163: 949- 956
doi: 10.1007/s10957-014-0540-8
|
10 |
Sun X K , Long X J , Chai Y . Sequential optimality conditions for fractional optimization with applications to vector optimization. J Optim Theory Appl, 2015, 164: 479- 499
doi: 10.1007/s10957-014-0578-7
|
11 |
Bao T Q , Mordukhovich B S . Relative Pareto minimizers for multiobjective problems:existence and optimality conditions. Math Program, 2011, 122: 301- 347
|
12 |
Bao T Q, Mordukhovich B S. Extended Pareto optimality in multiobjective problem//Ansari Q H, Yao J C, et al. Recent Advances in Vector Optimization, 2011: 467-515
|
13 |
Bao T Q , Mordukhovich B S . Necessary nondomination conditions in set and vector optimization with variable ordering structures. J Optim Theory Appl, 2014, 162: 350- 370
doi: 10.1007/s10957-013-0332-6
|
14 |
Helbig S , Pateva D . On several concepts for ε-efficiency. OR Spectrum, 1994, 16: 179- 186
doi: 10.1007/BF01720705
|
15 |
Isac G . Pareto optimization in infinite-dimensional spaces:The importance of nuclear cones. J Math Anal Appl, 1994, 182: 393- 404
doi: 10.1006/jmaa.1994.1093
|
16 |
Jameson G . Ordered Linear Spaces. New York: Springer, 1970
|
17 |
Guo X L , Li S J . Optimality conditions for vector optimization problems with difference of convex maps. J Optim Theory Appl, 2014, 162: 821- 844
doi: 10.1007/s10957-013-0327-3
|
18 |
Zhu Q J . Hamiltonian necessary conditions for a multiobjective optimal control problem with endpoint constraints. SIAM J Control Optim, 2000, 39: 97- 112
doi: 10.1137/S0363012999350821
|
19 |
Zheng X Y , Ng K F . The Lagrange multilizer rule for multifuntions in Banach spaces. SIAM J Optim, 2006, 17: 1154- 1175
|
20 |
Zheng X Y , Ng K F . A unified separation theory for closed sets in a Banach space and optimality conditions for vector optimization. SIAM J Optim, 2011, 21: 886- 911
doi: 10.1137/100811155
|
21 |
Zheng X Y , Li R X . Lagrange multiplier rules for weak approximate pareto solutions of constrained vector optimization problems in Hilbert Spaces. J Optim Theory Appl, 2014, 162: 665- 679
doi: 10.1007/s10957-012-0259-3
|
22 |
Clarke F H , Ledyaev Y S , Stern R J , Wolenski P R . Nonsmooth Analysis and Control Theory. New York: Springer, 1998
|
23 |
Rockafellar R T , Wets R J B . Variational Analysis. Berlin: Springer, 1998
|
24 |
Schirotzek W . Nonsmooth Analysis. Berlin: Springer, 2007
|
25 |
Borwein J M , Preiss D . A smooth variational principle with applications to subdifferentiability and to differentiability of convex functions. Trans Amer Math Soc, 1987, 303: 517- 527
doi: 10.1090/S0002-9947-1987-0902782-7
|