数学物理学报, 2018, 38(6): 1058-1066 doi:

论文

分形空间上广义凸函数的新Simpson型不等式及应用

孙文兵,, 刘琼

New Simpson Type Inequalities for Generalized Convex Functions on Fractal Space and Its Applications

Sun Wenbing,, Liu Qiong

收稿日期: 2017-10-31  

基金资助: 国家自然科学基金.  61672356
邵阳市科技计划项目.  2017GX09

Received: 2017-10-31  

Fund supported: Supported by the NSFC.  61672356
the Science and Technology Plan Project of Shaoyang City.  2017GX09

作者简介 About authors

孙文兵,E-mail:swb0520@163.com , E-mail:swb0520@163.com

摘要

根据局部分数阶微积分理论以及分形实线的α(0 < α≤1)型集合\begin{document}$\mathbb{R}$\end{document}α上广义凸函数的定义,获得了几个涉及局部分数阶积分的Simpson型不等式.最后,给出了所得不等式在特殊均值和数值积分中的几个应用.

关键词: Simpson型不等式 ; 广义凸函数 ; 局部分数阶导数 ; 局部分数阶积分

Abstract

In the paper, the authors use local fractional calculus theory and the definition of generalized convex function on the α type set of the real line numbers \begin{document}$\mathbb{R}$\end{document}α, some new Simpson-type inequalities involving local fractional integrals are established. Finally, some applications of our obtained inequalities to special means and numerical integration are given.

Keywords: Simpson-type inequalities ; Generalized convex function ; Local fractional derivative ; Local fractional integral

PDF (283KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

孙文兵, 刘琼. 分形空间上广义凸函数的新Simpson型不等式及应用. 数学物理学报[J], 2018, 38(6): 1058-1066 doi:

Sun Wenbing, Liu Qiong. New Simpson Type Inequalities for Generalized Convex Functions on Fractal Space and Its Applications. Acta Mathematica Scientia[J], 2018, 38(6): 1058-1066 doi:

1 引言

\begin{document}$f:[a, b]\rightarrow \mathbb{R} $\end{document}在区间\begin{document}$(a, b)$\end{document}上是一个四阶连续可微函数,且\begin{document}$\|f^{(4)}\|_{\infty}=\mathop {\sup }\limits_{x \in (a,b)} |f^{(4)}| < \infty$\end{document},那么有如下不等式成立

$\begin{equation} \label{eq:1.1}\left| \frac{1}{3}\left[\frac{f(a)+f(b)}{2}+2f\left(\frac{a+b}{2}\right)\right]- \frac{1}{{b - a}}\int_a^b {f(x)} {\rm d}x\right| \le \frac{1}{2880}\|f^{(4)}\|_{\infty}(b-a)^{4}, \end{equation}$

不等式(1.1)是著名的Simpson不等式.对于该不等式的改进和推广,一般要用到函数凸性的定义,随着对凸性定义的推广研究, Simpson不等式的研究成果也越来越多,读者可以参见文献[1-5]等.

近年来,分形理论作为一门新理论、新科学在科学工程领域得到广泛的应用.分形理论最基本的特点是用分数维度的视角和数学方法描述和研究客观事物,由于分形理论的出现,许多力学等工程应用领域的问题得到了合理的解决和处理.因此,关于分形空间的数学理论的发展也十分迅速,尤其一些学者通过不同的方法构建了分形空间上的微积分理论,受到广泛关注,见文献[6-10].在文献[8, 11-12]中Yang系统阐述了建立在分形空间上的局部分数阶微积分的相关理论.

文献[13]中, Mo等提出了关于分形空间上广义凸函数的定义,并在分形空间上推广了Hermite-Hadamard不等式,结论如下:

定义1.1[13] 设\begin{document}$f:I\subseteq\mathbb{R} \rightarrow\mathbb{R} ^{\alpha}$\end{document},对任意\begin{document}$x_{1}, x_{2}\in I$\end{document}\begin{document}$\lambda\in[0, 1]$\end{document},如果以下不等式成立

则称\begin{document}$f$\end{document}为定义在\begin{document}$I$\end{document}上的广义凸函数.

定理1.1[13] (广义Hermite-Hadamard不等式) 令\begin{document}$f(x)\in I^{(\alpha)}_{x}[a, b]$\end{document}是区间\begin{document}$[a, b]$\end{document}上的一个广义凸函数, \begin{document}$a \le b$\end{document},则

$ \begin{equation} \label{eq:1.2} f(\frac{{a + b}}{2}) \le \frac{\Gamma(1+\alpha)}{{(b - a})^{\alpha}} {}_{a}I_{b}^{(\alpha)}{f(x)} \le \frac{{f(a) + f(b)}}{2^{\alpha}} . \end{equation}$

文献[14]中, Set等建立了一些关于广义拟凸函数的Simpson型积分不等式,并且证明了如下恒等式.

引理1.1\begin{document}$I\subseteq\mathbb{R} $\end{document}是一个区间, \begin{document}$f:I^{o}\subseteq\mathbb{R} \rightarrow\mathbb{R} ^{\alpha}$\end{document}(\begin{document}$I^{o}$\end{document}\begin{document}$I$\end{document}的内部)使得\begin{document}$f\in D_{\alpha}(I^{o})$\end{document}\begin{document}$f^{(\alpha)}\in C_{\alpha}[a, b]$\end{document},其中\begin{document}$a, b\in I^{o}, a < b$\end{document}.则对于所有的\begin{document}$x\in[a, b]$\end{document},有如下等式成立

$ \begin{eqnarray} \label{eq:1.3} &&\frac{1}{6^{\alpha}}\left[f(a)+f(b)+4^{\alpha}f\left(\frac{a+b}{2}\right)\right]-\frac{\Gamma(1+\alpha)}{(b-a)^{\alpha}} {}_{a}I_{b}^{(\alpha)}f(x) \nonumber \\&=& \frac{(b-a)^{\alpha}}{2^{\alpha}}\frac{1}{\Gamma(1+\alpha)}\int_{0}^{1}\Bigg[\big(\frac{t}{2}-\frac{1}{3}\big)^{\alpha}f^{(\alpha)}\left(\frac{1+t}{2}b+\frac{1-t}{2}a\right)\nonumber \\&&+\big(\frac{1}{3}-\frac{t}{2}\big)^{\alpha}f^{(\alpha)}\left(\frac{1+t}{2}a+\frac{1-t}{2}b\right)\Bigg]({\rm d}t)^{\alpha}. \end{eqnarray}$

本文在局部分数阶微积分理论的基础上,由分形集上广义凸函数的定义以及广义Hölder不等式等工具对Simpson型不等式进行推广,得到几个分形空间中关于广义凸函数的新Simpson型不等式,文章最后给出了这些不等式在求特殊均值以及求局部分数阶积分的数值积分上的应用.

2 预备知识

\begin{document}$\mathbb{R} ^{\alpha}$\end{document}为分形实线的\begin{document}$\alpha(0 < \alpha\leq1)$\end{document}型集合,称为一个分形集合,它与实数集\begin{document}$\mathbb{R} $\end{document}构成一对一的关系[8],相关运算律如下:

\begin{document}$a^{\alpha}, b^{\alpha}, c^{\alpha}\in\mathbb{R} ^{\alpha} (0 < \alpha\leq1)$\end{document},则

(1) \begin{document}$a^{\alpha}+b^{\alpha}\in\mathbb{R} ^{\alpha}$\end{document}, \begin{document}$a^{\alpha}b^{\alpha}\in\mathbb{R} ^{\alpha}$\end{document},

(2) \begin{document}$a^{\alpha}+b^{\alpha}=b^{\alpha}+a^{\alpha}=(a+b)^{\alpha}=(b+a)^{\alpha}$\end{document},

(3)\begin{document}$a^{\alpha}+(b^{\alpha}+c^{\alpha})=(a+b)^{\alpha}+c^{\alpha}$\end{document},

(4) \begin{document}$a^{\alpha}b^{\alpha}=b^{\alpha} a^{\alpha}=(ab)^{\alpha}=(ba)^{\alpha}$\end{document},

(5) \begin{document}$a^{\alpha}(b^{\alpha}c^{\alpha})=(a^{\alpha}b^{\alpha})c^{\alpha}$\end{document},

(6)\begin{document}$a^{\alpha}(b^{\alpha}+c^{\alpha})=a^{\alpha}b^{\alpha}+a^{\alpha}c^{\alpha}$\end{document},

(7) \begin{document}$a^{\alpha}+0^{\alpha}=0^{\alpha}+a^{\alpha}=a^{\alpha}$\end{document}\begin{document}$a^{\alpha}1^{\alpha}=1^{\alpha}a^{\alpha}=a^{\alpha}$\end{document}.

利用Gao-Yang-Kang的方法给出局部分数阶导数和局部分数阶积分的定义[8-9].

定义2.1[8] 设\begin{document}$f:\mathbb{R} \rightarrow\mathbb{R} ^{\alpha}, x\rightarrow f(x)$\end{document}是一个不可微函数,如果对于任意的\begin{document}$\varepsilon>0$\end{document},总存在\begin{document}$\delta>0$\end{document},其中\begin{document}$\epsilon, \delta\in\mathbb{R} $\end{document},使得当\begin{document}$|x-x_{0}| < \delta$\end{document}时有

成立,则称不可微函数\begin{document}$f$\end{document}\begin{document}$x_{0}$\end{document}处局部分数阶连续.如果\begin{document}$f(x)$\end{document}在区间\begin{document}$(a, b)$\end{document}上局部分数阶连续,记为\begin{document}$f(x)\in C_{\alpha}(a, b)$\end{document}.

定义2.2[8] 若

则称之为\begin{document}$f(x)$\end{document}\begin{document}$x=x_{0}$\end{document}处的\begin{document}$\alpha$\end{document}阶局部分数阶导数,记\begin{document}$D_{x}^{(\alpha)}=f^{(\alpha)}(x)$\end{document}.

\begin{document}$x\in(a, b)$\end{document},存在\begin{document}$ f^{(\alpha)}(x)=D_{x}^{(\alpha)}$\end{document},记为\begin{document}$f^{(\alpha)}(x)\in D_{x}^{(\alpha)}(a, b)$\end{document}. \begin{document}$D_{\alpha}(a, b)$\end{document}称为\begin{document}$\alpha$\end{document} -阶局部分数阶导数的集合.

定义2.3[8] 设\begin{document}$f(x)\in C_{\alpha}[a, b], a=t_{0} < t_{1} < \cdot\cdot\cdot < t_{N-1} < t_{N}=b, [t_{j}, t_{j+1}]$\end{document}是区间\begin{document}$[a, b]$\end{document}的一个划分, \begin{document}$\Delta t_{j}=t_{j+1}-t_{j}, \Delta t= \max\{\Delta t_{0}, \Delta t_{1} \cdot\cdot\cdot\Delta t_{N-1}\}$\end{document},则\begin{document}$f(x)$\end{document}\begin{document}$\alpha$\end{document}阶局部分数阶积分定义为

注2.1 \begin{document}${}_{a}I_{a}^{(\alpha)}f(x)=0$\end{document},当\begin{document}$a < b$\end{document}时, \begin{document}${}_{a}I_{b}^{(\alpha)}f(x)=-{}_{b}I_{a}^{(\alpha)}f(x)$\end{document}.\begin{document}$x\in[a, b]$\end{document}时, \begin{document}${}_{a}I_{x}^{(\alpha)}f(x)$\end{document}存在,则记为\begin{document}$f(x)\in I_{x}^{(\alpha)}[a, b]$\end{document}.

引理2.1[8]

(1)设\begin{document}$f(x)=g^{(\alpha)}(x)\in C_{\alpha}[a, b]$\end{document},则

(2)设\begin{document}$f(x), g(x)\in D_{\alpha}[a, b]$\end{document},且\begin{document}$f^{(\alpha)}(x), g^{(\alpha)}(x)\in C_{\alpha}[a, b]$\end{document}

引理2.2[8]

引理2.3[8] (广义Hölder不等式) 设\begin{document}$f, g\in C_{\alpha}[a, b], p, q >1$\end{document},且\begin{document}$\frac{1}{p}+\frac{1}{q}=1$\end{document},则

3 主要结果和证明

定理3.1 假设\begin{document}$f$\end{document}满足引理1.1的条件,若\begin{document}$\left|f^{(\alpha)}\right|^{q}$\end{document}\begin{document}$[a, b]$\end{document}上是广义凸函数,则有如下局部分数阶不等式成立

其中\begin{document}$p, q>1, $\end{document}并且\begin{document}$\frac{1}{p}+\frac{1}{q}=1.$\end{document}

 根据引理1.1, (1.3)式两边同时取模,利用模的运算性质和广义Hölder不等式(引理2.3),可得

$ \begin{eqnarray} \label{eq: 3.2}&&\left|\frac{1}{6^{\alpha}}\left[f(a)+f(b)+4^{\alpha}f\left(\frac{a+b}{2}\right)\right]-\frac{\Gamma(1+\alpha)}{(b-a)^{\alpha}} {}_{a}I_{b}^{(\alpha)}f(x)\right| \nonumber \\&\leq&\frac{(b-a)^{\alpha}}{2^{\alpha}}\Bigg\{\left(\frac{1}{\Gamma(1+\alpha)}\int_{0}^{1}\left|\big(\frac{t}{2}-\frac{1}{3}\big)^{\alpha}\right|^{p}({\rm d}t)^{\alpha} \right)^{\frac{1}{p}} \\&&\times \left(\frac{1}{\Gamma(1+\alpha)}\int_{0}^{1}\left|f^{(\alpha)}\left(\frac{1+t}{2}b+\frac{1-t}{2}a\right)\right|^{q}({\rm d}t)^{\alpha}\right)^{\frac{1}{q}} \\&&+\left(\frac{1}{\Gamma(1+\alpha)}\int_{0}^{1}\left|\big(\frac{1}{3}-\frac{t}{2}\big)^{\alpha}\right|^{p}({\rm d}t)^{\alpha}\right)^{\frac{1}{p}}\\&&\times \left(\frac{1}{\Gamma(1+\alpha)} \int_{0}^{1}\left|f^{(\alpha)}\left(\frac{1+t}{2}a+\frac{1-t}{2}b\right)\right|^{q}({\rm d}t)^{\alpha}\right)^{\frac{1}{q}}\Bigg\}. \end{eqnarray} $

由引理2.2以及分形集\begin{document}$\mathbb{R} ^{\alpha}$\end{document}上的运算性质得到

$\begin{eqnarray} \label{eq: 3.3}\frac{1}{\Gamma(\alpha+1)}\int_{0}^{1}\left|\big(\frac{t}{2}-\frac{1}{3}\big)^{\alpha}\right|^{p}({\rm d}t)^{\alpha} &=&\frac{1}{\Gamma(\alpha+1)}\int_{0}^{1}\left|\big(\frac{1}{3}-\frac{t}{2}\big)^{\alpha}\right|^{p}({\rm d}t)^{\alpha} \nonumber \\&=&\frac{2^{\alpha}(2^{(p+1)\alpha}+1)}{6^{(p+1)\alpha}}\frac{\Gamma(1+p\alpha)}{\Gamma(1+(p+1)\alpha)}.\end{eqnarray} $

由于\begin{document}$\left|f^{(\alpha)}\right|^{q}$\end{document}\begin{document}$[a, b]$\end{document}上是广义凸函数,由广义Hermite-Hadamard不等式(即定理1.1),可得

$\begin{eqnarray} \label{eq: 3.4}\int_{0}^{1}\left|f^{(\alpha)}\left( \frac{1+t}{2}b+\frac{1-t}{2}a\right)\right|^{q}({\rm d}t)^{\alpha}&=&\frac{2^{\alpha}}{(b-a)^{\alpha}}\int_{\frac{b+a}{2}}^{b}\left|f^{(\alpha)}(x)\right|^{q}({\rm d}x)^{\alpha}\nonumber\\ &\leq&\frac{|f^{(\alpha)}(b)|^{q}+ |f^{(\alpha)}(\frac{b+a}{2})|^{q}}{2^{\alpha}}, \end{eqnarray}$

$\begin{eqnarray} \label{eq: 3.5}\int_{0}^{1}\left|f^{(\alpha)}\left( \frac{1+t}{2}a+\frac{1-t}{2}b\right)\right|^{q}({\rm d}t)^{\alpha}&=&\frac{2^{\alpha}}{(a-b)^{\alpha}}\int_{\frac{a+b}{2}}^{a}\left|f^{(\alpha)}(x)\right|^{q}({\rm d}x)^{\alpha}\nonumber\\ &\leq&\frac{|f^{(\alpha)}(a)|^{q}+ |f^{(\alpha)}(\frac{a+b}{2})|^{q}}{2^{\alpha}}.\end{eqnarray}$

将不等式(3.3)-(3.5)代入不等式(3.2),可得

$\begin{eqnarray} \label{eq: 3.6}&&\left|\frac{1}{6^{\alpha}}\left[f(a)+f(b)+4^{\alpha}f\left(\frac{a+b}{2}\right)\right]-\frac{\Gamma(1+\alpha)}{(b-a)^{\alpha}} {}_{a}I_{b}^{(\alpha)}f(x)\right| \nonumber \\&\leq&\frac{(b-a)^{\alpha}}{2^{\alpha}(\Gamma(1+\alpha))^{\frac{1}{q}}}\left(\frac{2^{\alpha}(2^{(p+1)\alpha}+1)}{6^{(p+1)\alpha}}\frac{\Gamma(1+p\alpha)}{\Gamma(1+(p+1)\alpha)}\right)^{\frac{1}{p}} \nonumber \\&& \times\Bigg[\left(\frac{|f^{(\alpha)}(b)|^{q}+ |f^{(\alpha)}(\frac{b+a}{2})|^{q}}{2^{\alpha}}\right)^{\frac{1}{q}} +\left( \frac{|f^{(\alpha)}(a)|^{q}+ |f^{(\alpha)}(\frac{a+b}{2})|^{q}}{2^{\alpha}}\right)^{\frac{1}{q}}\Bigg]. \end{eqnarray}$

定理得证.

推论3.1 假设满足引理1.1的条件,若\begin{document}$\left|f^{(\alpha)}\right|^{q}$\end{document}\begin{document}$[a, b]$\end{document}上是广义凸函数,则有如下局部分数阶不等式成立

$ \begin{eqnarray} \label{eq: 3.7} &&\left|\frac{1}{6^{\alpha}}\left[f(a)+f(b)+4^{\alpha}f\left(\frac{a+b}{2}\right)\right]-\frac{\Gamma(1+\alpha)}{(b-a)^{\alpha}} {}_{a}I_{b}^{(\alpha)}f(x)\right| \nonumber \\&\leq&\frac{(b-a)^{\alpha}}{2^{\alpha(1+\frac{2}{q})} (\Gamma(1+\alpha))^{\frac{1}{q}}}\left(\frac{2^{\alpha}(2^{(p+1)\alpha}+1)}{6^{(p+1)\alpha}}\frac{\Gamma(1+p\alpha)}{\Gamma(1+(p+1)\alpha)}\right)^{\frac{1}{p}}\nonumber \\&& \times\Bigg[\left( 3^{\alpha}|f^{(\alpha)}(b)|^{q}+ |f^{(\alpha)}(a)|^{q}\right)^{\frac{1}{q}} +\left(3^{\alpha}|f^{(\alpha)}(a)|^{q}+ |f^{(\alpha)}(b)|^{q}\right)^{\frac{1}{q}}\Bigg], \end{eqnarray} $

其中\begin{document}$p, q>1, $\end{document}并且\begin{document}$\frac{1}{p}+\frac{1}{q}=1.$\end{document}

 由\begin{document}$\left|f^{(\alpha)}\right|^{q}$\end{document}\begin{document}$[a, b]$\end{document}上是广义凸函数,可得

将其代入定理3.1的(3.1)式可得结论成立.

推论3.2 在推论3.1中,如果\begin{document}$f(a)=f(b)=f\left(\frac{a+b}{2}\right)$\end{document},则有如下局部分数阶不等式成立

$ \begin{eqnarray}\label{eq: 3.8} &&\left|f\left(\frac{a+b}{2}\right)-\frac{\Gamma(1+\alpha)}{(b-a)^{\alpha}} {}_{a}I_{b}^{(\alpha)}f(x)\right| \nonumber \\&\leq&\frac{(b-a)^{\alpha}}{2^{\alpha(1+\frac{2}{q})} (\Gamma(1+\alpha))^{\frac{1}{q}}}\left(\frac{2^{\alpha}(2^{(p+1)\alpha}+1)}{6^{(p+1)\alpha}}\frac{\Gamma(1+p\alpha)}{\Gamma(1+(p+1)\alpha)}\right)^{\frac{1}{p}}\nonumber \\&& \times\Bigg[\left( 3^{\alpha}|f^{(\alpha)}(b)|^{q}+ |f^{(\alpha)}(a)|^{q}\right)^{\frac{1}{q}} +\left(3^{\alpha}|f^{(\alpha)}(a)|^{q}+ |f^{(\alpha)}(b)|^{q}\right)^{\frac{1}{q}}\Bigg], \end{eqnarray}$

其中\begin{document}$p, q>1, $\end{document}并且\begin{document}$\frac{1}{p}+\frac{1}{q}=1.$\end{document}

定理3.2 假设\begin{document}$f$\end{document}满足引理1.1的条件,若\begin{document}$\left|f^{(\alpha)}\right|^{q}$\end{document}\begin{document}$[a, b]$\end{document}上是广义凸函数,则有如下局部分数阶不等式成立

$ \begin{eqnarray}\label{eq: 3.9} &&\left|\frac{1}{6^{\alpha}}\left[f(a)+f(b)+4^{\alpha}f\left(\frac{a+b}{2} \right)\right]-\frac{\Gamma(1+\alpha)}{(b-a)^{\alpha}} {}_{a}I_{b}^{(\alpha)}f(x)\right| \nonumber \\ &\leq& \frac{(b-a)^{\alpha}}{2^{\alpha(1+\frac{1}{q})}}\left (\frac{5^{\alpha}\Gamma(1+\alpha)}{18^{\alpha}\Gamma(1+2\alpha)} \right)^{\frac{1}{p}} \Bigg\{ \Bigg[\left(\frac{13^{\alpha}}{54^{\alpha}} \frac{\Gamma(1+\alpha)}{\Gamma(1+2\alpha)}+\frac{11^{\alpha}}{54^{\alpha}} \frac{\Gamma(1+2\alpha)}{\Gamma(1+3\alpha)}\right)\left|f^{\alpha}(b)\right|^{q} \\ && +\left(\frac{25^{\alpha}}{54^{\alpha}}\frac{\Gamma(1+2\alpha)} {\Gamma(1+3\alpha)}-\frac{7^{\alpha}}{54^{\alpha}}\frac{\Gamma (1+\alpha)}{\Gamma(1+2\alpha)}\right)\left|f^{\alpha}(a)\right|^{q} \Bigg]^{\frac{1}{q}}\nonumber \\&& +\Bigg[\left(\frac{13^{\alpha}}{54^{\alpha}}\frac{\Gamma(1+\alpha)}{\Gamma(1+2\alpha)}+\frac{11^{\alpha}}{54^{\alpha}}\frac{\Gamma(1+2\alpha)}{\Gamma(1+3\alpha)}\right)\left|f^{\alpha}(a)\right|^{q} \\ &&+\left(\frac{25^{\alpha}}{54^{\alpha}}\frac{\Gamma(1+2\alpha)}{\Gamma(1+3\alpha)}-\frac{7^{\alpha}}{54^{\alpha}}\frac{\Gamma(1+\alpha)}{\Gamma(1+2\alpha)}\right)\left|f^{\alpha}(b)\right|^{q}\Bigg]^{\frac{1}{q}}\Bigg\}, \end{eqnarray}$

其中\begin{document}$p, q>1, $\end{document}并且\begin{document}$\frac{1}{p}+\frac{1}{q}=1.$\end{document}

 因为\begin{document}$\big|\frac{1}{3}-\frac{t}{2}\big|^{\alpha}= \big|\frac{1}{3}-\frac{t}{2}\big|^{\alpha(\frac{1}{p}+\frac{1}{q})}$\end{document},根据引理1.1, (1.3)式两边同时取模,并由广义Hölder不等式(引理2.3),可得

$\begin{eqnarray} \label{eq: 3.10}&&\left|\frac{1}{6^{\alpha}}\left[f(a)+f(b)+4^{\alpha}f\left(\frac{a+b}{2}\right)\right]-\frac{\Gamma(1+\alpha)}{(b-a)^{\alpha}} {}_{a}I_{b}^{\alpha}f(x)\right| \nonumber \\ &\leq&\frac{(b-a)^{\alpha}}{2^{\alpha}}\Bigg\{\left(\frac{1}{\Gamma(1+\alpha)} \int_{0}^{1}\left|\frac{t}{2}-\frac{1}{3}\right|^{\alpha}({\rm d}t)^{\alpha} \right)^{\frac{1}{p}} \\ &&\times \left(\frac{1}{\Gamma(1+\alpha)}\int_{0}^{1} \left|\frac{t}{2}-\frac{1}{3}\right|^{\alpha}\left|f^{(\alpha)}\left( \frac{1+t}{2}b+\frac{1-t}{2}a\right)\right|^{q}({\rm d}t)^{\alpha} \right)^{\frac{1}{q}}\nonumber \\&& +\left(\frac{1}{\Gamma(1+\alpha)}\int_{0}^{1}\left|\frac{1}{3}-\frac{t}{2}\right|^{\alpha}({\rm d}t)^{\alpha}\right)^{\frac{1}{p}} \\ &&\times\left(\frac{1}{\Gamma(1+\alpha)}\int_{0}^{1}\left|\frac{1}{3}-\frac{t}{2}\right|^{\alpha}\left|f^{(\alpha)}\left(\frac{1+t}{2}a+\frac{1-t}{2}b\right)\right|^{q}({\rm d}t)^{\alpha}\right)^{\frac{1}{q}}\Bigg\}. \end{eqnarray}$

通过计算,可得

$\begin{eqnarray}\label{eq: 3.11}\frac{1}{\Gamma(1+\alpha)}\int_{0}^{1}\left|\frac{t}{2}-\frac{1}{3}\right|^{\alpha}({\rm d}t)^{\alpha}=\frac{1}{\Gamma(1+\alpha)}\int_{0}^{1}\left|\frac{1}{3}-\frac{t}{2}\right|^{\alpha}({\rm d}t)^{\alpha}=\frac{5^{\alpha}\Gamma(1+\alpha)}{18^{\alpha}\Gamma(1+2\alpha)}.\end{eqnarray}$

因为\begin{document}$\left|f^{(\alpha)}\right|^{q}$\end{document}\begin{document}$[a, b]$\end{document}上是广义凸函数,可得

$ \begin{eqnarray}\label{eq: 3.12} && \frac{1}{\Gamma(\alpha+1)}\int_{0}^{1}\left|\frac{t}{2}-\frac{1}{3}\right|^{\alpha}\left|f^{(\alpha)}\left( \frac{1+t}{2}b+\frac{1-t}{2}a\right)\right|^{q}({\rm d}t)^{\alpha}\nonumber\\&\leq&\frac{1}{2^{\alpha}}\bigg[\frac{1}{\Gamma(\alpha+1)}\int_{0}^{1}\left|\frac{t}{2}-\frac{1}{3}\right|^{\alpha} (1+t)^{\alpha}({\rm d}t)^{\alpha}\left|f^{(\alpha)}(b)\right|^{q} \\ &&+\frac{1}{\Gamma(\alpha+1)}\int_{0}^{1}\left|\frac{t}{2}-\frac{1}{3}\right|^{\alpha}(1-t)^{\alpha}({\rm d}t)^{\alpha}\left|f^{(\alpha)}(a)\right|^{q}\bigg]\end{eqnarray}$

$\begin{eqnarray}\label{eq: 3.13} &&\frac{1}{\Gamma(\alpha+1)}\int_{0}^{1}\left|\frac{1}{3}-\frac{t}{2}\right|^{\alpha}\left|f^{(\alpha)}\left( \frac{1+t}{2}a+\frac{1-t}{2}b\right)\right|^{q}({\rm d}t)^{\alpha}\nonumber\\&\leq&\frac{1}{2^{\alpha}}\bigg[\frac{1}{\Gamma(\alpha+1)}\int_{0}^{1}\left|\frac{1}{3}-\frac{t}{2}\right|^{\alpha} (1+t)^{\alpha}({\rm d}t)^{\alpha}\left|f^{(\alpha)}(a)\right|^{q} \\ &&+\frac{1}{\Gamma(\alpha+1)}\int_{0}^{1}\left|\frac{1}{3}-\frac{t}{2}\right|^{\alpha}(1-t)^{\alpha}({\rm d}t)^{\alpha}\left|f^{(\alpha)}(b)\right|^{q}\bigg].\end{eqnarray}$

根据引理2.2以及(3.11)式,计算可得

$\begin{eqnarray}\label{eq: 3.14}\frac{1}{\Gamma(\alpha+1)}\int_{0}^{1}\left|\frac{1}{3}-\frac{t}{2}\right|^{\alpha} (1+t)^{\alpha}({\rm d}t)^{\alpha}&=&\frac{1}{\Gamma(\alpha+1)}\int_{0}^{1}\left|\frac{t}{2}-\frac{1}{3}\right|^{\alpha} (1+t)^{\alpha}({\rm d}t)^{\alpha}\nonumber\\&=&\frac{13^{\alpha}}{54^{\alpha}}\frac{\Gamma(1+\alpha)}{\Gamma(1+2\alpha)}+\frac{11^{\alpha}}{54^{\alpha}}\frac{\Gamma(1+2\alpha)}{\Gamma(1+3\alpha)}.\end{eqnarray}$

\begin{document}$1-t=s$\end{document},根据引理2.2,计算可得

$\begin{eqnarray}\label{eq:3.15}\frac{1}{\Gamma(\alpha+1)}\int_{0}^{1}\left|\frac{1}{3}-\frac{t}{2}\right|^{\alpha}(1-t)^{\alpha}({\rm d}t)^{\alpha}&=&\frac{1}{\Gamma(\alpha+1)}\int_{0}^{1}\left|\frac{t}{2}-\frac{1}{3}\right|^{\alpha}(1-t)^{\alpha}({\rm d}t)^{\alpha}\nonumber\\&=&\frac{25^{\alpha}}{54^{\alpha}}\frac{\Gamma(1+2\alpha)}{\Gamma(1+3\alpha)}-\frac{7^{\alpha}}{54^{\alpha}}\frac{\Gamma(1+\alpha)}{\Gamma(1+2\alpha)}.\end{eqnarray}$

将(3.11)-(3.15)式代入(3.10)式可得不等式(3.9),定理得证.

注3.1 类似于推论3.2,在定理3.1和定理3.2中,若\begin{document}$f(a)=f(b)=f\left(\frac{a+b}{2}\right)$\end{document},分别可得新的不等式.

4 特殊均值中的应用

取如下广义均值

命题4.1 设\begin{document}$a, b\in\mathbb{R}, a < b, 0 \notin [a, b]$\end{document}\begin{document}$n\in {\Bbb Z}, |n|\geq2$\end{document}.则对所有的\begin{document}$p, q>1, $\end{document}\begin{document}$\frac{1}{p}+\frac{1}{q}=1$\end{document}

$\begin{eqnarray} \label{eq: 4.1}&&\left|\frac{1}{6^{\alpha}}\left[2^{\alpha}A(a^{n}, b^{n})+4^{\alpha}[A(a, b)]^{n}\right]-\Gamma(1+\alpha)[L_{n}(a, b)]^{n}\right|\nonumber \\&\leq& \frac{(b-a)^{\alpha}}{2^{\alpha(1+\frac{2}{q})} (\Gamma(1+\alpha))^{\frac{1}{q}}}\left(\frac{2^{\alpha}(2^{(p+1)\alpha}+1)}{6^{(p+1)\alpha}}\frac{\Gamma(1+p\alpha)}{\Gamma(1+(p+1)\alpha)}\right)^{\frac{1}{p}} \frac{\Gamma(1+n\alpha)}{\Gamma(1+(n-1)\alpha)} \nonumber\\&&\times \Bigg[\Big(3^{\alpha}b^{(n-1)\alpha q}+ a^{(n-1)\alpha q}\Big)^{\frac{1}{q}}+\Big(3^{\alpha}a^{(n-1)\alpha q}+ b^{(n-1)\alpha q}\Big)^{\frac{1}{q}} \Bigg]. \end{eqnarray}$

 在推论3.1中,取\begin{document}$f(x)=x^{n\alpha}, x\in\mathbb{R}, n\in{\Bbb Z}, n\geq2$\end{document},由文献[13]可知\begin{document}$f(x)$\end{document}是一个广义凸函数,则

结论得证.

5 数值积分中的应用

本文中提出的不等式在局部分数积分的数值积分中有重要的应用.令\begin{document}$I_{n}$\end{document}为区间\begin{document}$[a, b], 0 < a < b$\end{document},上的一个分划,且\begin{document}$I_{n}:a=x_{0} < x_{1} < \cdot\cdot\cdot < x_{n}=b$\end{document},考虑下面的局部分数阶求积公式

$\begin{eqnarray} \label{5.1}{}_{a}I_{b}^{(\alpha)}f(x)=T(f, I_{n})+E(f, I_{n}), \end{eqnarray}$

其中, \begin{document}$T(f, I_{n})$\end{document}为逼近局部分数阶积分的推广的Simpson型近似计算公式

因此, \begin{document}$|E(f, I_{n})|=\left| T(f, I_{n})-{}_{a}I_{b}^{(\alpha)}f(x)\right|$\end{document}即为积分\begin{document}${}_{a}I_{b}^{(\alpha)}f(x)$\end{document}近似计算公式的误差.

命题5.1 设\begin{document}$f:[a, b]\subseteq\mathbb{R} \rightarrow\mathbb{R} ^{\alpha}$\end{document}使得\begin{document}$f\in D_{\alpha}(a, b)$\end{document}\begin{document}$f\in C_{\alpha}[a, b]$\end{document},对于区间\begin{document}$[a, b]$\end{document}上的任意一个分划\begin{document}$I_{n}$\end{document},由公式(5.1)确定的数值积分,余项\begin{document}$E(f, I_{n})$\end{document}满足如下不等式

$ \begin{eqnarray}|E(f, I_{n})| &\leq&\frac{1}{2^{\alpha(1+\frac{2}{q})} (\Gamma(1+\alpha))^{1+\frac{1}{q}}}\left(\frac{2^{\alpha}(2^{(p+1)\alpha}+1)}{6^{(p+1)\alpha}}\frac{\Gamma(1+p\alpha)}{\Gamma(1+(p+1)\alpha)}\right)^{\frac{1}{p}}\nonumber\\ &&\times \sum\limits_{i = 0}^{n-1}(x_{i+1}-x_{i})^{2\alpha} \bigg[\Big(3^{\alpha}|f^{(\alpha)}(x_{i+1})|^{q}+ |f^{(\alpha)}(x_{i})|^{q}\Big)^{\frac{1}{q}} \\ &&+\Big(3^{\alpha}|f^{(\alpha)}(x_{i})|^{q} + |f^{(\alpha)}(x_{i+1})|^{q}\Big)^{\frac{1}{q}} \bigg] . \end{eqnarray}$

 根据推论3.1,对于分划\begin{document}$I_{n}$\end{document}的每一个子区间\begin{document}$[x_{i}, x_{i+1}]$\end{document}\begin{document}$(i=0, \cdot\cdot\cdot, n-1)$\end{document}上,有

\begin{document}$i$\end{document}\begin{document}$0$\end{document}\begin{document}$n-1$\end{document}对上式两边求和,并由三角不等式,得

结论得证.

参考文献

Alomari M , Darus M , Dragomir S S .

New inequalities of Simpson's type for s-convex functions with applications

RGMIA Res Rep Coll, 2009, 12 (4): Article 9

URL     [本文引用: 1]

Sarikaya M Z , Set E , Özdemir E M .

On new inequalities of Simpson's type for s-convex functions

Computers and Mathematics with Applications, 2010, 60: 2191- 2199

DOI:10.1016/j.camwa.2010.07.033     

Li Y , Du T .

Some Simpson type integral inequalities for functions whose third derivatives are (α, m)-GA-convex functions

Journal of the Egyptian Mathematical Society, 2016, 24 (2): 175- 180

DOI:10.1016/j.joems.2015.05.009     

Chun L , Qi F .

Inequalities of Simpson type for functions whose third derivatives are extended s-convex functions and applications to means

J Comp Anal Appl, 2015, 19 (3): 555- 569

URL    

Qaisar S , He C J , Hussain S .

A generalizations of Simpsons type inequality for differentiable functions using (α, m)-convex functions and applications

J Inequal Appl, 2013, 158: 1- 13

URL     [本文引用: 1]

Babakhani A , Daftardar-geiji V .

On calculus of local fractional derivatives

J Math Anal Appl, 2002, 270 (1): 66- 79

DOI:10.1016/S0022-247X(02)00048-3      [本文引用: 1]

Zhao Y, Cheng D F, Yang X J. Approximation solutions for local fractional Schrodinger equation in the one-dimensional Cantorian system. Adv Math Phys, 2013, Article ID: 291386

Yang X J . Advanced Local Fractional Calculus and Its Applications. New York: World Science Publisher, 2012

[本文引用: 9]

Yang Y J, Baleanu D, Yang X J. Analysis of fractal wave equations by local fractional Fourier series method. Adv Math Phys, 2013, Article ID: 632309

[本文引用: 1]

Yang X J , Machado J T , Cattani C , Gao F .

On a fractal LC-electric circuit modeled by local fractional calculus

Communications in Nonlinear Science and Numerical Simulation, 2017, 47: 200- 206

DOI:10.1016/j.cnsns.2016.11.017      [本文引用: 1]

Yang X J , Gao F , Srivastava H M .

Non-differentiable exact solutions for the nonlinear odes defined on fractal sets

Fractals, 2017, 25: 1740002

DOI:10.1142/S0218348X17400023      [本文引用: 1]

Yang X J , Tenreiro J A , Baleanu D .

Exact traveling-wave solution for local fractional Boussinesq equation in fractal domain

Fractals, 2017, 25: 1740006

DOI:10.1142/S0218348X17400060      [本文引用: 1]

Mo H X, Sui X, Yu D Y. Generalized convex functions on fractal sets and two related inequalities. Abstract and Applied Analysis, 2014, Article ID: 636751

[本文引用: 4]

Set E , Sarikaya M Z , Uygun N .

On new inequalities of Simpson's type for generalized quasi convex functions

Adv Inequal Appl, 2017, 2017 (3): 1- 11

URL     [本文引用: 1]

/