For the general growth curve linear model:
Y q×n = A q×m B m×k C k×n + eq×n ,
where E(e)=0,and Cov(e→)=Vn×n×Σq×q, three relative efficiencies of B:
Δp1(B|B*)=[tr((CovB)·(Cov -1B*))p]1/p,
Δp2(B|B*)=[tr(CovB - CovB#)p]1/p,
Δp3(μ|μ#)=[tr(Covμ- Covμ*)p]1/p,
are proposed and their upper bounds are given, where p≥1,μ=ABC,μ*=AB*C.