Let \$R=Z/2\+kZ\$, where \$k>1\$. By matrix method , the normal forms of skewsymmetric matrices over \$R\$ are determined. Let \$G\+m\-p(R,H)={P∈GL\-m(R)|PHP′=H}\$ be pseudosymplectic group determined by matrice \$H\$, where \$H=[JB((][HL(2]0[]I\+\{(v)\}\=-I\+\{(v)\}[]0[HL)][JB))]Δ,Δ=[JB((][HL(2]\{2\}[TX-]\+\{k-1\}[]\{1\}[TX-]\=-\{1\}[TX-][]0[HL)][JB))]. \$ The author computes the order of \$|G\+m\-P(R,H)|.\$