Acta mathematica scientia,Series A ›› 2004, Vol. 4 ›› Issue (6): 772-785.

• Articles • Previous Articles     Next Articles

Normal Form of Skewsymmetric Matrices |and Ordersof Pseudosymplectic Groups over

 TUN Tan   

  • Online:2004-12-25 Published:2004-12-25
  • Supported by:

    海南省自然科学基金(10401)资助

Abstract:

Let $R=Z/2\+kZ$, where $k>1$. By matrix method , the normal forms of skewsymmetric matrices over $R$ are determined. Let $G\+m\-p(R,H)={P∈GL\-m(R)|PHP′=H}$ be  pseudosymplectic group determined by matrice $H$, where $H=[JB((][HL(2]0[]I\+\{(v)\}\=-I\+\{(v)\}[]0[HL)][JB))]Δ,Δ=[JB((][HL(2]\{2\}[TX-]\+\{k-1\}[]\{1\}[TX-]\=-\{1\}[TX-][]0[HL)][JB))]. $ The author  computes the order of  $|G\+m\-P(R,H)|.$

Key words: Finite local rings $Z/2\+kZ$, Skewsymmetric matrix, Pseudosymplectic groups

CLC Number: 

  • 05B20
Trendmd