| [1] | Singh A, Singh N. Laser guiding through an axially nonuniform collisionless plasma channel. J Fusion Energ, 2012, 31(6): 538-543 |
| [2] | Gill T S. Optical guiding of laser beam in nonuniform plasma. Pramana, 2012, 55(5): 835-842 |
| [3] | Linares F, Ponce G. Introduction to Nonlinear Dispersive Equations. New York: Springer-Verlag, 2015 |
| [4] | Guzmán C M. On well posedness for the inhomogeneous nonlinear Schr?dinger equation. Nonlinear Analysis: Real World Applications, 2017, 37: 249-286 |
| [5] | Cho Y, Lee M. On the Orbital stability of inhomogeneous nonlinear Schr?dinger equation with singular potential. Bull Korean Math Soc, 2019, 56(6): 1601-1615 |
| [6] | Bonheure D, Schaftingen J V. Bound state solutions for a class of nonlinear Schr?dinger equations. Rev Mat Iberoamericana, 2008, 24(1): 297-351 |
| [7] | Ding W Y, Ni W M. On the existence of positive entire solutions of a semilinear elliptic equation. Arch Rational Mech Anal, 1986, 91: 283-308 |
| [8] | Lions P L. The concentration-compactness principle in the calculus of variations. The locally compact case II. Annales de l'Institut Henri Poincaré C, Analyse Nonlinéaire, 1984, 1(4): 223-283 |
| [9] | Cazenave T, Lions P L. Orbital stability of standing waves for some nonlinear Schr?dinger equations. Comm Math Phys, 1982, 85: 549-561 |
| [10] | Bellazzini J, Visciglia N. On the orbital stability for a class of nonautonomous NLS. Indiana University Mathematics Journal, 2010, 59(3): 1211-1230 |
| [11] | Fukuizumi R, Ohta M. Instability of standing waves for nonlinear Schr?dinger equations with inhomogeneous nonlinearities. J Math Kyoto Univ, 2005, 45(1): 145-158 |
| [12] | Genoud F, Stuart C A. Schr?dinger equations with a spatially decaying nonlinearity: existence and stability of standing waves. Discrete Contin Dyn Syst, 2008, 21(1): 137-186 |
| [13] | Chen J Q. On a class of nonlinear inhomogeneous Schr?dinger equation. J Appl Math Comput, 2010, 32: 237-253 |
| [14] | Farah L G. Global well-posedness and blow-up on the energy space for the inhomogeneous nonlinear Schr?dinger equation. J Evol Equ, 2016, 16: 193-208 |