Acta mathematica scientia,Series A ›› 2024, Vol. 44 ›› Issue (2): 476-483.
Previous Articles Next Articles
Received:
2023-03-22
Revised:
2023-10-25
Online:
2024-04-26
Published:
2024-04-07
Supported by:
CLC Number:
Liu Xinyan, Li Xiaoguang. Orbital Stability of Standing Waves for a Class of Inhomogeneous Nonlinear Schrödinger Equation[J].Acta mathematica scientia,Series A, 2024, 44(2): 476-483.
[1] |
Singh A, Singh N. Laser guiding through an axially nonuniform collisionless plasma channel. J Fusion Energ, 2012, 31(6): 538-543
doi: 10.1007/s10894-011-9498-9 |
[2] |
Gill T S. Optical guiding of laser beam in nonuniform plasma. Pramana, 2012, 55(5): 835-842
doi: 10.1007/s12043-000-0051-z |
[3] | Linares F, Ponce G. Introduction to Nonlinear Dispersive Equations. New York: Springer-Verlag, 2015 |
[4] | Guzmán C M. On well posedness for the inhomogeneous nonlinear Schrödinger equation. Nonlinear Analysis: Real World Applications, 2017, 37: 249-286 |
[5] | Cho Y, Lee M. On the Orbital stability of inhomogeneous nonlinear Schrödinger equation with singular potential. Bull Korean Math Soc, 2019, 56(6): 1601-1615 |
[6] |
Bonheure D, Schaftingen J V. Bound state solutions for a class of nonlinear Schrödinger equations. Rev Mat Iberoamericana, 2008, 24(1): 297-351
doi: 10.4171/rmi |
[7] | Ding W Y, Ni W M. On the existence of positive entire solutions of a semilinear elliptic equation. Arch Rational Mech Anal, 1986, 91: 283-308 |
[8] | Lions P L. The concentration-compactness principle in the calculus of variations. The locally compact case II. Annales de l'Institut Henri Poincaré C, Analyse Nonlinéaire, 1984, 1(4): 223-283 |
[9] | Cazenave T, Lions P L. Orbital stability of standing waves for some nonlinear Schrödinger equations. Comm Math Phys, 1982, 85: 549-561 |
[10] | Bellazzini J, Visciglia N. On the orbital stability for a class of nonautonomous NLS. Indiana University Mathematics Journal, 2010, 59(3): 1211-1230 |
[11] | Fukuizumi R, Ohta M. Instability of standing waves for nonlinear Schrödinger equations with inhomogeneous nonlinearities. J Math Kyoto Univ, 2005, 45(1): 145-158 |
[12] |
Genoud F, Stuart C A. Schrödinger equations with a spatially decaying nonlinearity: existence and stability of standing waves. Discrete Contin Dyn Syst, 2008, 21(1): 137-186
doi: 10.3934/dcds.2008.21.137 |
[13] | Chen J Q. On a class of nonlinear inhomogeneous Schrödinger equation. J Appl Math Comput, 2010, 32: 237-253 |
[14] | Farah L G. Global well-posedness and blow-up on the energy space for the inhomogeneous nonlinear Schrödinger equation. J Evol Equ, 2016, 16: 193-208 |
[1] |
Ku Fuli.
Compact Commutators of ![]() |
[2] | Shen Qinrui,Sun Junjun. Measure of Non-Compactness of Operators in Hilbert Space [J]. Acta mathematica scientia,Series A, 2023, 43(4): 1003-1008. |
[3] | Li Yixian,Zhang Zhengjie. The Existence of Ground State Solutions for a Class of Equations Related to Klein-Gordon-Maxwell Systems [J]. Acta mathematica scientia,Series A, 2023, 43(3): 680-690. |
[4] | Li Yongxiang,Wei Qilin. Existence Results of Periodic Solutions for Semilinear Evolution Equation in Banach Spaces and Applications [J]. Acta mathematica scientia,Series A, 2023, 43(3): 702-712. |
[5] |
Li Yangrong, Wang Fengling, Yang Shuang.
Backward ![]() ![]() |
[6] |
Chen Hongxin,Zhang Xuejun,Zhou Min.
Composition Operators on ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
[7] | Anran Li,Dandan Fan,Chongqing Wei. Existence and Asymptotic Behaviour of Solutions for Kirchhoff Type Equations with Zero Mass and Critical [J]. Acta mathematica scientia,Series A, 2022, 42(6): 1729-1743. |
[8] | Wenjie Liu,Shengli Xie. Existence Results of Mild Solutions for Impulsive Neutral Measure Differential Equations with Infinite Delay [J]. Acta mathematica scientia,Series A, 2022, 42(6): 1671-1681. |
[9] | Wending Xu,Ting Zhong. The Convergence of Nonsmooth Newton's Method [J]. Acta mathematica scientia,Series A, 2022, 42(5): 1537-1550. |
[10] | Yuting Guo,Xuejun Zhang. Composition Operators from Normal Weight General Function Spaces to Bloch Type Spaces [J]. Acta mathematica scientia,Series A, 2022, 42(5): 1306-1319. |
[11] | Zerong He,Nan Zhou. Optimal Harvesting in a Competing System of Hierarchical Age-Structured Populations [J]. Acta mathematica scientia,Series A, 2022, 42(1): 228-244. |
[12] | Si Xu,Xuejun Zhang. Weighted Composition Operator on the Normal Weight Zygmund Space in the Unit Ball [J]. Acta mathematica scientia,Series A, 2020, 40(2): 288-303. |
[13] | Haide Gou. Existence of L-Quasi Mild Solutions for Damped Elastic Systems in Banach Spaces [J]. Acta mathematica scientia,Series A, 2020, 40(2): 408-421. |
[14] | Bo Zhu,Baoyan Han,Lishan Liu. Existence of Mild Solutions for a Class of Fractional Semilinear Integro-Differential Equation of Mixed Type [J]. Acta mathematica scientia,Series A, 2019, 39(6): 1334-1341. |
[15] | Shujun Liu. Weak Solutions for the Systems of Multifluid Flows [J]. Acta mathematica scientia,Series A, 2019, 39(5): 1077-1086. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 78
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 57
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|