| [1] | Asanov G S. Finsleroid-Finsler spaces of positive-definite and relativistic types. Reports on Math Phys, 2006, 58: 275-300 | | [2] | Bishop R L, O'Neill B. Manifolds of negative curvature. Trans Amer Math Soc, 1969, 145: 1-49 | | [3] | Chen B, Shen Z, Zhao L. Constructions of Einstein Finsler metrics by warped product. Int J Math, 2018, 47: 127-128 | | [4] | Cheng X, Wang H, Wang M. (α,β)-metrics with relatively isotropic mean Landsberg curvature. Publ Math Debrecen, 2008, 72: 475-485 | | [5] | Kozma L, Peter R, Varga C. Warped product of Finsler manifolds. Ann Univ Sci Budapest, 2001, 44: 157-170 | | [6] | Li B, Shen Z. On a class of weak Landsberg metrics. Sci China Math, 2007, 50(4): 573-589 | | [7] | Liu H, Mo X. Finsler warped product metrics of Douglas type. Canad Math Bull, 2019, 62: 119-130 | | [8] | Liu H, Mo X, Zhang H. Finsler warped product metrics with special Riemannian curvature properties. Sci China Math, 2020, 63: 1391-1408 | | [9] | Shen Z. On the non-Riemannian quantities in Finsler geometry. Canad Math Bull, 2013, 56: 184-193 | | [10] | Shen Z. On a class of Landsberg metrics in Finsler geometry. Canad J Math, 2009, 61: 1357-1374 | | [11] | Yang Z, Zhang X. Finsler warped product metrics with relatively isotropic Landsberg curvature. Canad Math Bull, 2021, 64(1): 182-191 | | [12] | Zhou S, Wang B, Li B. On a class of almost regular Landsberg metrics. Sci China Math, 2019, 62: 935-960 |
|