[1] |
Asanov G S. Finsleroid-Finsler spaces of positive-definite and relativistic types. Reports on Math Phys, 2006, 58: 275-300
doi: 10.1016/S0034-4877(06)80053-4
|
[2] |
Bishop R L, O'Neill B. Manifolds of negative curvature. Trans Amer Math Soc, 1969, 145: 1-49
doi: 10.1090/tran/1969-145-00
|
[3] |
Chen B, Shen Z, Zhao L. Constructions of Einstein Finsler metrics by warped product. Int J Math, 2018, 47: 127-128
|
[4] |
Cheng X, Wang H, Wang M. $(\alpha,\beta)$-metrics with relatively isotropic mean Landsberg curvature. Publ Math Debrecen, 2008, 72: 475-485
doi: 10.5486/PMD
|
[5] |
Kozma L, Peter R, Varga C. Warped product of Finsler manifolds. Ann Univ Sci Budapest, 2001, 44: 157-170
|
[6] |
Li B, Shen Z. On a class of weak Landsberg metrics. Sci China Math, 2007, 50(4): 573-589
doi: 10.1007/s11425-007-0021-8
|
[7] |
Liu H, Mo X. Finsler warped product metrics of Douglas type. Canad Math Bull, 2019, 62: 119-130
doi: 10.4153/CMB-2017-077-0
|
[8] |
Liu H, Mo X, Zhang H. Finsler warped product metrics with special Riemannian curvature properties. Sci China Math, 2020, 63: 1391-1408
doi: 10.1007/s11425-018-9422-4
|
[9] |
Shen Z. On the non-Riemannian quantities in Finsler geometry. Canad Math Bull, 2013, 56: 184-193
doi: 10.4153/CMB-2011-163-4
|
[10] |
Shen Z. On a class of Landsberg metrics in Finsler geometry. Canad J Math, 2009, 61: 1357-1374
|
[11] |
Yang Z, Zhang X. Finsler warped product metrics with relatively isotropic Landsberg curvature. Canad Math Bull, 2021, 64(1): 182-191
|
[12] |
Zhou S, Wang B, Li B. On a class of almost regular Landsberg metrics. Sci China Math, 2019, 62: 935-960
|