Acta mathematica scientia,Series A ›› 2023, Vol. 43 ›› Issue (6): 1789-1802.
Previous Articles Next Articles
Received:
2022-11-07
Revised:
2023-03-02
Online:
2023-12-26
Published:
2023-11-16
Supported by:
CLC Number:
Liu Guowei, Wang Qiling. The Well-posedness of a Delayed Non-Newtonian Fluid on ${2D}$ Unbounded Domains[J].Acta mathematica scientia,Series A, 2023, 43(6): 1789-1802.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Bellout H, Bloom F. Bounds for the dimensions of the attractors of nonlinear bipolar viscous fluids. Asymptotic Anal, 1995, 11: 131-167 |
[2] |
Bellout H, Bloom F, Nečas J. Young measure-valued solutions for non-Newtonian incompressible viscous fluids. Comm PDE, 1994, 19: 1763-1803
doi: 10.1080/03605309408821073 |
[3] | Bellout H, Bloom F, Nečas J. Phenomenological behavior of multipolar viscous fluids. Quart Appl Math, 1992, 5: 559-583 |
[4] | Bellout H, Bloom F, Nečas J. Existence, uniqueness and stability of solutions to the initial boundary value problem for bipolar viscous fluids. Differential Integral Equations, 1995, 8: 453-464 |
[5] |
Bloom F, Hao W. Regularization of a non-Newtonian system in an unbounded channel: Existence and uniqueness of solutions. Nonlinear Anal: TMA, 2001, 44: 281-309
doi: 10.1016/S0362-546X(99)00264-3 |
[6] |
Bloom F, Hao W. Regularization of a non-Newtonian system in an unbounded channel: Existence of a maximal compact attractor. Nonlinear Anal: TMA, 2001, 43: 743-766
doi: 10.1016/S0362-546X(99)00232-1 |
[7] | Caraballo T, Real J. Navier-Stokes equations with delays. R Soc London Proc Ser A Math Phys Eng Sci, 2001, 457: 2441-2453 |
[8] |
Garrido-Atienza M J, Marín-Rubio P. Navier Stokes equations with delays on unbounded domains. Nonlinear Anal: TMA, 2006, 64: 1100-1118
doi: 10.1016/j.na.2005.05.057 |
[9] |
Jeong J, Park J. Pullback attractors for a $2D$-non-autonomous incompressible non-Newtonian fluid with variable delays. Discrete Contin Dyn Syst B, 2016, 21: 2687-2702
doi: 10.3934/dcdsb |
[10] | Li Y, Zhao C. Global attractor for a system of the non-Newtonian incompressible fluid in 2D unbounded domains. Acta Anal Funct Appl, 2002, 4: 1009-1327 |
[11] | Lion P L. Quelques Méthodes De Résolution Des Problems Aux Limits Non Linéaires. Paris: Dunod, 1969 |
[12] |
Liu G. Pullback asymptotic behavior of solutions for a 2D non-autonomous non-Newtonian fluid. J Math Fluid Mech, 2017, 19: 623-643
doi: 10.1007/s00021-016-0299-9 |
[13] |
Liu L, Caraballo T, Fu X. Dynamics of a non-automous incompressible non-Newtonian fluid with dely. Dyn Partial Differ Equ, 2017, 14: 375-402
doi: 10.4310/DPDE.2017.v14.n4.a4 |
[14] | Liu L, Caraballo T, Fu X. Exponential stability of an incompressible non-Newtonian fluid with delay. Discrete Contin Dyn Syst B, 2018, 23: 4285-4303 |
[15] | Málek J, Nečas J, Rokyta M, Ružička M. Weak and Measure-Valued Solutions to Evolutionary PDE. New York: Champman-Hall, 1996 |
[16] | Nečas J, Silhavy M. Multipular viscous fluids. Quart Appl Math, 1991, XLIX(2): 247-265 |
[17] | Temam R. Infinite Dimensional Dynamical Systems in Mechanics and Physics. Berlin: Springer, 1997 |
[18] | Zhao C. Pullback asymptotic behavior of solutions for a non-autonomous non-Newtonian fluid on 2D unbounded domains. J Math Phys, 2012, 53: 1-22 |
[19] |
Zhao C, Li Y. $H^2$-compact attractor for a non-Newtonian system in two-dimensional unbound domains. Nonlinear Anal, 2004, 56: 1091-1103
doi: 10.1016/j.na.2003.11.006 |
[20] |
Zhao C, Li Y, Zhou S. Regularity of trajectory attractor and upper semicontinuity of global attractor for a 2D non-Newtonian fluid. J Differential Equations, 2009, 247: 2331-2363
doi: 10.1016/j.jde.2009.07.031 |
[21] |
Zhao C, Liu G, An R. Global well-posedness and pullback attractors for an incompressible non-Newtonian fluid with infinite delays. Differ Equ Dyn Syst, 2017, 25: 39-64
doi: 10.1007/s12591-014-0231-9 |
[22] |
Zhao C, Liu G, Wang W. Smooth pullback attractors for a non-autonomous 2D non-Newtonian fluid and their tempered behaviors. J Math Fluid Mech, 2014, 16: 243-262
doi: 10.1007/s00021-013-0153-2 |
[23] |
赵才地, 阳玲, 刘国威, 许正雄. 类时滞非牛顿流方程组在二维无界区域上的整体适定性与拉回吸引子. 应用数学学报, 2017, 40(2): 287-311
doi: 10.12387/C2017025 |
Zhao C, Yang L, Liu G, Hsu C. Global well-posenness and pullback attractor for a delayed non-Newtonian fluid on two dimensional unbounded domains. Acta Math Appl Sinica Chinese Ser, 2017, 40(2): 287-311
doi: 10.12387/C2017025 |
|
[24] |
Zhao C, Zhou S. Uniform attractors for a nonautonomous incompressible non-Newtonian fluid with locally uniformly integrable external forces in distribution space. J Math Phys, 2007, 48: 032702
doi: 10.1063/1.2709845 |
[25] |
Zhao C, Zhou S. Pullback attractors for a non-autonomous incompressible non-Newtonian fluid. J Differential Equations, 2007, 238: 394-425
doi: 10.1016/j.jde.2007.04.001 |
[26] |
Zhao C, Zhou S, Li Y. Existence and regularity of pullback attractors for an incompressible non-Newtonian fluid with delays. Quart Appl Math, 2009, 67: 503-540
doi: 10.1090/qam/2009-67-03 |
[1] | Ma Yani, Yuan Hailong. Bifurcation Analysis of a Class of Gierer-Meinhardt Activation Inhibition Model with Time Delay [J]. Acta mathematica scientia,Series A, 2023, 43(6): 1774-1788. |
[2] | Cai Senlin,Zhou Shouming,Chen Rong. On the Cauchy Problem for a Shallow Water Regime of Waves with Large Amplitude [J]. Acta mathematica scientia,Series A, 2023, 43(4): 1197-1120. |
[3] | Zeng Jing,Peng Jiayu. Essential Stability and Hadamard Well-Posedness of Excess Demand Equilibrium Problems [J]. Acta mathematica scientia,Series A, 2023, 43(3): 930-938. |
[4] | Kang Xiaodong, Fan Hongxia. Approximate Controllability for a Class of Second-Order Evolution Equations with Instantaneous Impulse [J]. Acta mathematica scientia,Series A, 2023, 43(2): 421-432. |
[5] | Fu Qinhong, Xiong Lianglin, Zhang Haiyang, Qin Ya, Quan Shenai. Sliding Mode Control for Time-Varying Delay Systems with Semi-Markov Jump [J]. Acta mathematica scientia,Series A, 2023, 43(2): 549-562. |
[6] |
He Yaxing, Tang Yinghui, Liu Qionglin.
Analysis of |
[7] | Lin Jie, Wang Tianyi. Well-Posedness and Convergence Rates of Three-Dimensional Incompressible Euler Flows in Axisymmetric Nozzles with Symmetric Body [J]. Acta mathematica scientia,Series A, 2023, 43(1): 219-237. |
[8] | Wenjie Liu,Shengli Xie. Existence Results of Mild Solutions for Impulsive Neutral Measure Differential Equations with Infinite Delay [J]. Acta mathematica scientia,Series A, 2022, 42(6): 1671-1681. |
[9] | Rui Xu,Yan Yang. Dynamics of an HTLV-I Infection Model with Delayed and Saturated CTL Immune Response and Immune Impairment [J]. Acta mathematica scientia,Series A, 2022, 42(6): 1836-1848. |
[10] | Yage Tong,Kaisu Wu. Spectral Analysis of the Main Operator of Rotenberg Equation with Time Delay Under Nonsmooth Boundary Conditions [J]. Acta mathematica scientia,Series A, 2022, 42(5): 1320-1331. |
[11] | Meng Deng,Rui Xu. Stability Analysis of an HIV Infection Dynamic Model with CTL Immune Response and Immune Impairment [J]. Acta mathematica scientia,Series A, 2022, 42(5): 1592-1600. |
[12] | Xiangyu Xiao,Zhilin Pu. The Global Attractors of Cahn-Hilliard-Brinkman System [J]. Acta mathematica scientia,Series A, 2022, 42(4): 1027-1040. |
[13] | Kai Wang,Hongyong Zhao. Traveling Wave of a Reaction-Diffusion Dengue Epidemic Model with Time Delays [J]. Acta mathematica scientia,Series A, 2022, 42(4): 1209-1226. |
[14] | Ying Liu,Jianfang Gao. Oscillation Analysis of a Kind of Systems with Piecewise Continuous Arguments [J]. Acta mathematica scientia,Series A, 2022, 42(3): 826-838. |
[15] | Zerong He,Yimeng Dou,Mengjie Han. Optimal Boundary Control for a Hierarchical Size-Structured Population Model with Delay [J]. Acta mathematica scientia,Series A, 2022, 42(3): 867-880. |
|