Acta mathematica scientia,Series A ›› 2023, Vol. 43 ›› Issue (1): 261-273.
Previous Articles Next Articles
Song Huijuan1,Huang Qian2,Wang Zejia1,*()
Received:
2021-11-24
Revised:
2022-07-05
Online:
2023-02-26
Published:
2023-03-07
Supported by:
CLC Number:
Song Huijuan, Huang Qian, Wang Zejia. Asymptotic Analysis of a Tumor Model with Angiogenesis and a Periodic Supply of External Nutrients[J].Acta mathematica scientia,Series A, 2023, 43(1): 261-273.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Bai M, Xu S H. Qualitative analysis of a mathematical model for tumor growth with a periodic supply of external nutrients. Pac J Appl Math, 2013, 5(4): 217-223 |
[2] |
Bodnar M, Foryś U. Time delay in necrotic core formation. Math Biosci Eng, 2005, 2(3): 461-472
pmid: 20369933 |
[3] |
Bueno H, Ercole G, Zumpano A. Stationary solutions of a model for the growth of tumors and a connection between the nonnecrotic and necrotic phases. SIAM J Appl Math, 2008, 68(4): 1004-1025
doi: 10.1137/060654815 |
[4] |
Byrne H M, Chaplain M A J. Growth of nonnecrotic tumors in the presence and absence of inhibitors. Math Biosci, 1995, 130(2): 151-181
pmid: 8527869 |
[5] |
Byrne H M, Chaplain M A J. Growth of necrotic tumors in the presence and absence of inhibitors. Math Biosci, 1996, 135(2): 187-216
pmid: 8768220 |
[6] | Cui S B. Global existence of solutions for a free boundary problem modeling the growth of necrotic tumors. Interfaces Free Bound, 2005, 7(2): 147-159 |
[7] | Cui S B. Formation of necrotic cores in the growth of tumors: analytic results. Acta Math Sci, 2006, 26B(4): 781-796 |
[8] | Cui S B. Analysis of a free boundary problem modeling the growth of necrotic tumors. arXiv: 1902.04066 |
[9] |
Cui S B, Friedman A. Analysis of a mathematical model of the growth of necrotic tumors. J Math Anal Appl, 2001, 255(2): 636-677
doi: 10.1006/jmaa.2000.7306 |
[10] | Forger D B. Biological Clocks, Rhythms, and Oscillations:the Theory of Biological Timekeeping. Cambridge: MIT Press, 2017 |
[11] |
Foryś U, Mokwa-Borkowska A. Solid tumour growth analysis of necrotic core formation. Math Comput Modelling, 2005, 42(5/6): 593-600
doi: 10.1016/j.mcm.2004.06.022 |
[12] | Friedman A. Cancer models and their mathematical analysis//Friedman A. Tutor Math Bio III. Berlin: Springer, 2006: 223-246 |
[13] |
Friedman A, Lam K Y. Analysis of a free-boundary tumor model with angiogenesis. J Differential Equations, 2015, 259(12): 7636-7661
doi: 10.1016/j.jde.2015.08.032 |
[14] |
Greenspan H P. Models for the growth of a solid tumor by diffusion. Stud Appl Math, 1972, 51(4): 317-340
doi: 10.1002/sapm1972514317 |
[15] |
Greenspan H P. On the growth and stability of cell cultures and solid tumors. J Theor Biol, 1976, 56(1): 229-242
pmid: 1263527 |
[16] |
Hao W R, Hauenstein J D, Hu B, et al. Bifurcation for a free boundary problem modeling the growth of a tumor with a necrotic core. Nonlinear Anal: Real World Appl, 2012, 13(2): 694-709
doi: 10.1016/j.nonrwa.2011.08.010 |
[17] | He W H, Xing R X. The existence and linear stability of periodic solution for a free boundary problem modeling tumor growth with a periodic supply of external nutrients. Nonlinear Anal: Real World Appl, 2021, 60: 1-16 |
[18] | Huang Y D. Asymptotic stability for a free boundary tumor model with a periodic supply of external nutrients. Nonlinear Anal: Real World Appl, 2022, 65: 1-22 |
[19] |
Huang Y D, Zhang Z C, Hu B. Linear stability for a free-boundary tumor model with a periodic supply of external nutrients. Math Methods Appl Sci, 2019, 42(3): 1039-1054
doi: 10.1002/mma.5412 |
[20] |
Lowengrub J S, Frieboes H B, Jin F, et al. Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity, 2010, 23(1): R1-R91
doi: 10.1088/0951-7715/23/1/R01 |
[21] | Song H J, Hu B, Wang Z J. Stationary solutions of a free boundary problem modeling the growth of vascular tumors with a necrotic core. Discrete Contin Dyn Syst Ser B, 2021, 26(1): 667-691 |
[22] | Song H J, Hu W T, Wang Z J. Analysis of a nonlinear free-boundary tumor model with angiogenesis and a connection between the nonnecrotic and necrotic phases. Nonlinear Anal: Real World Appl, 2021, 59: 1-11 |
[23] |
Wu J D. Analysis of a nonlinear necrotic tumor model with two free boundaries. J Dynam Differential Equations, 2021, 33(1): 511-524
doi: 10.1007/s10884-019-09817-3 |
[24] |
Wu J D, Wang C. Radially symmetric growth of necrotic tumors and connection with nonnecrotic tumors. Nonlinear Anal: Real World Appl, 2019, 50: 25-33
doi: 10.1016/j.nonrwa.2019.04.012 |
[25] | Wu J D, Xu S H. Asymptotic behavior of a nonlinear necrotic tumor model with a periodic external nutrient supply. Discrete Contin Dyn Syst Ser B, 2020, 25(7): 2453-2460 |
[26] | Xu S H, Su D. Analysis of necrotic core formation in angiogenic tumor growth. Nonlinear Anal: Real World Appl, 2020, 51: 1-12 |
[27] | Zhang F W, Xu S H. Steady-state analysis of necrotic core formation for solid avascular tumors with time delays in regulatory apoptosis. Comput Math Methods Med, 2014, 2014: 1-4 |
[28] | Zhang X H, Zhang Z C. Linear stability for a periodic tumor angiogenesis model with free boundary. Nonlinear Anal Real World Appl, 2021, 59: 1-21 |
[29] |
Zhuang Y H, Cui S B. Analysis of a free boundary problem modeling the growth of multicell spheroids with angiogenesis. J Differential Equations, 2018, 265(2): 620-644
doi: 10.1016/j.jde.2018.03.005 |
|