Acta mathematica scientia,Series A ›› 2023, Vol. 43 ›› Issue (1): 249-260.
Previous Articles Next Articles
Zhang Xuekang1,*(),Wan Shanlin1(),Shu Huisheng2()
Received:
2021-04-22
Revised:
2022-07-05
Online:
2023-02-26
Published:
2023-03-07
Supported by:
CLC Number:
Zhang Xuekang, Wan Shanlin, Shu Huisheng. Parameter Estimation for Nonlinear Stochastic Differential Equations Driven by
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Applebaum D. Lévy Processes and Stochastic Calculus. United Kingdom: Cambridge University Press, 2009 |
[2] | Basawa I, Scott D. Asymptotic Optimal inference for Non-ergodic Models. New York: Springer, 1983 |
[3] |
Bercu B, ProÏa F, Savy N. On Ornstein-Uhlenbeck driven by Ornstein-Uhlenbeck processes. Statist Probab Lett, 2014, 85: 36-44
doi: 10.1016/j.spl.2013.11.002 |
[4] |
Bo L, Wang Y, Yang X, Zhang G. Maximum likelihood estimation for reflected Ornstein-Uhlenbeck processes. J Statist Plann Inference, 2011, 141: 588-596
doi: 10.1016/j.jspi.2010.07.001 |
[5] |
Dietz H. Asymptotic behavior of trajectory fitting estimators for certain non-ergodic SDE. Stat Inference Stoch Process, 2001, 4: 249-258
doi: 10.1023/A:1012254332474 |
[6] | Dietz H, Kutoyants Y. A class of minimum-distance estimators for diffusion processes with ergodic properties. Stat Decis, 1997, 15: 211-227 |
[7] | Dietz H, Kutoyants Y. Parameter estimation for some non-recurrent solutions of SDE. Stat Decis, 2003, 21: 29-45 |
[8] |
Fama E. Mandelbrot and the stable Paretian hypothesis. J Business, 1963, 36: 420-429
doi: 10.1086/294633 |
[9] | Hu Y, Long H. Parameter estimation for Ornstein-Uhlenbeck processes driven by $\alpha$-stable Lévy motions. Commun Stoch Anal, 2007, 1: 175-192 |
[10] |
Hu Y, Long H. Least squares estimator for Ornstein-Uhlenbeck processes driven by $\alpha$-stable motions. Stochastic Process Appl, 2009, 119: 2465-2480
doi: 10.1016/j.spa.2008.12.006 |
[11] | Hu Y, Long H. On the singularity of least squares estimator for mean-reverting $\alpha$-stable motions. Acta Math Sci, 2009, 29B(3): 599-608 |
[12] | Janicki A, Weron A. Simulation and Chaotic Behavior of $\alpha$-stable Stochastic Processes. New York: Marcel Dekker, 1994 |
[13] | Jeong H, Tomber B, Albert R, et al. The large-scale organization of metabolic networks. Nature, 2000, 407: 378-382 |
[14] |
Jiang H, Dong X. Parameter estimation for the non-stationary Ornstein-Uhlenbeck process with linear drift. Stat Papers, 2015, 56: 257-268
doi: 10.1007/s00362-014-0580-z |
[15] |
Kessler M. Estimation of an ergodic diffusion from discrete observations. Scand J Statist, 1997, 24: 211-229
doi: 10.1111/1467-9469.00059 |
[16] | Kutoyants Y. Statistical Inference for Ergodic Diffusion Processes. Heidelberg: Springer-Verlag, 2004 |
[17] | Long H. Parameter estimation for a class of stochastic differential equations driven by small stable noises from discrete observations. Acta Math Sci, 2010, 30B(3): 645-663 |
[18] |
Mandelbrot B. The Pareto-Lévy law and the distribution of income. Int Econ Rev, 1960, 1: 79-106
doi: 10.2307/2525289 |
[19] |
Pan Y, Yan L. The least squares estimation for the $\alpha$-stable Ornstein-Uhlenbeck process with constant drift. Methodol Comput Appl Probab, 2019, 21: 1165-1182
doi: 10.1007/s11009-018-9654-z |
[20] | Sato K. Lévy Processes and Infinitely Divisible Distributions. Cambridge: Cambridge University Press, 1999 |
[21] |
Shimizu Y. Local asymptotic mixed normality for discretely observed non-recurrent Ornstein-Uhlenbeck processes. Ann Inst Stat Math, 2012, 64: 193-211
doi: 10.1007/s10463-010-0307-4 |
[22] |
Xu W, Wu C, Dong Y, Xiao W. Modeling Chinese stock returns with stable distribution. Math Comput Model, 2011, 54: 610-617
doi: 10.1016/j.mcm.2011.03.004 |
[23] |
Zang Q, Zhang L. Asymptotic behaviour of the trajectory fitting estimator for reflected Ornstein-Uhlenbeck Processes. J Theor Probab, 2019, 32: 183-201
doi: 10.1007/s10959-017-0796-7 |
[24] |
Zang Q, Zhu C. Asymptotic behaviour of parametric estimation for nonstationary reflected Ornstein-Uhlenbeck processes. J Math Anal Appl, 2016, 444: 839-851
doi: 10.1016/j.jmaa.2016.06.067 |
[25] |
Zhang S, Zhang X. A least squares estimator for discretely observed Ornstein-Uhlenbeck processes driven by symmetric $\alpha$-stable motions. Ann Inst Statist Math, 2013, 65: 89-103
doi: 10.1007/s10463-012-0362-0 |
[26] |
Zhang X, Yi H, Shu H. Nonparametric estimation of the trend for stochastic differential equations driven by small $\alpha$-stable noises. Statist Probab Lett, 2019, 151: 8-16
doi: 10.1016/j.spl.2019.03.012 |
[27] |
Zhang X, Yi H, Shu H. Parameter estimation for non-stationary reflected Ornstein-Uhlenbeck processes driven by $\alpha$-stable noises. Statist Probab Lett, 2020, 156: 108617
doi: 10.1016/j.spl.2019.108617 |
[28] |
Zhang X, Yi H, Shu H. Parameter estimation for certain nonstationary processes driven by $\alpha$-stable motions. Comm Statist Theory Methods, 2021, 50: 95-104
doi: 10.1080/03610926.2019.1630436 |
[29] | Zolotarev V. One-Dimensional Stable Distribution. Providence: American Mathematical Society, 1986 |
[1] | Chen Fei,Weiyin Fei. Consistency of Least Squares Estimation to the Parameter for Stochastic Differential Equations Under Distribution Uncertainty [J]. Acta mathematica scientia,Series A, 2019, 39(6): 1499-1513. |
[2] | Wang Jixia, Xiao Qingxian. Local Estimation of the Diffusion Coefficient for Time-Inhomogeneous Diffusion Models [J]. Acta mathematica scientia,Series A, 2015, 35(2): 332-344. |
[3] | TAO Bao. Asymptotic Properties of the Negative Extreme-value Index Estimator [J]. Acta mathematica scientia,Series A, 2014, 34(3): 611-618. |
[4] | WANG Cheng-Yong. A Semiparametric Smooth Transition Regression Model and Its Series Estimator [J]. Acta mathematica scientia,Series A, 2012, 32(4): 797-807. |
[5] | WANG Hong-Ning, YU Huan-Ran. Robust Nonparametric Regression with Simultaneous Scale Curve Estimation Based on Dependent Observations [J]. Acta mathematica scientia,Series A, 2010, 30(3): 835-847. |
[6] | ZHANG Jun-Jian, LI Guo-Ying. Supremum-type Tests for Goodness-of-fit [J]. Acta mathematica scientia,Series A, 2010, 30(2): 344-357. |
[7] | ZHANG Juan, CUI Heng-Jian. Weighted Adjust LS Estimation |in EV Model with Missing Data [J]. Acta mathematica scientia,Series A, 2009, 29(6): 1465-1476. |
[8] | YIN Chang-Ming, LI Yong-Ming, WANG Peng-Yan. Strong Convergence Rates of the Maximum Quasi-Likelihood Estimator in Generalized Linear Models [J]. Acta mathematica scientia,Series A, 2009, 29(4): 1058-1064. |
[9] | LI Li-Na, GAO Fu-Qing. Rates of Strong Uniform Consistency for Kernel Density Estimators of Directional Data [J]. Acta mathematica scientia,Series A, 2009, 29(3): 707-715. |
[10] |
Xiao Zhihong;Liu Luqin.
MLE of Generalized Linear Model Randomly Censored with Incomplete Information [J]. Acta mathematica scientia,Series A, 2008, 28(3): 553-564. |
[11] |
Li Guoliang; Liu Luqin.
Strong Consistency of a Class of Estimators in Partial Linear Model under Martingale Difference Sequence [J]. Acta mathematica scientia,Series A, 2007, 27(5): 788-801. |
[12] | Xia Tian; Tang Niansheng; Wang Xueren; Zhang Wenzhuan. Asymptotic Properties in Nonlinear Reproductive Dispersion Models with Random Effects [J]. Acta mathematica scientia,Series A, 2007, 27(1): 146-154. |
[13] | Ding Jieli;Chen Xiru. Strong Consistency of the Maximum Likelihood Estimator in Generalized Linear Models [J]. Acta mathematica scientia,Series A, 2006, 26(2): 168-173. |
[14] | TUN Qun-Yang. Strong Consistency of M Estimator in Linear Model for rho mixing Samples [J]. Acta mathematica scientia,Series A, 2005, 25(1): 41-46. |
[15] | HU Gen-Qi, FENG De-Xin. Uniform Stabilization of Timoshenko Beams with Boundary Feedba ck Control [J]. Acta mathematica scientia,Series A, 2003, 23(6): 719-728. |
|