Acta mathematica scientia,Series A ›› 2023, Vol. 43 ›› Issue (1): 169-180.
Previous Articles Next Articles
Received:
2021-10-26
Revised:
2022-08-25
Online:
2023-02-26
Published:
2023-03-07
Supported by:
CLC Number:
Ouyang Baiping. Blow-up of Solutions to the Euler-Poisson-Darboux-Tricomi Equation with a Nonlinear Memory Term[J].Acta mathematica scientia,Series A, 2023, 43(1): 169-180.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] |
D'ambrosio L, Lucente S. Nonlinear Liouville theorems for Grushin and Tricomi operators. J Differential Equations, 2003, 193(2): 511-541
doi: 10.1016/S0022-0396(03)00138-4 |
[2] |
Yagdjian K. A note on the fundamental solution for the Tricomi-type equation in the hyperbolic domain. J Differential Equations, 2004, 206(1): 227-252
doi: 10.1016/j.jde.2004.07.028 |
[3] |
Yagdjian K. Global existence for the $n$-dimensional semilinear Tricomi-type equations. Comm Partial Differential Equations, 2006, 31(6): 907-944
doi: 10.1080/03605300500361511 |
[4] |
Sun Y Q. Sharp lifespan estimates for subcritical generalized semilinear Tricomi equations. Math Meth Appl Sci, 2021, 44(13): 10239-10251
doi: 10.1002/mma.7402 |
[5] | Lin J Y, Tu Z H. Lifespan of semilinear generalized Tricomi equation with Strauss type exponent. Preprint, arXiv:1903.11351v2(2019) |
[6] |
He D Y, Witt I, Yin H C. On the global solution problem for semilinear generalized Tricomi equations, I. Calc Var, 2017, 56(2): Article 21
doi: 10.1007/s00526-017-1125-9 |
[7] | He D Y, Witt I, Yin H C. On semilinear Tricomi equations in one space dimension. Preprint, arXiv:1810. 12748(2018) |
[8] |
He D Y, Witt I, Yin H C. On semilinear Tricomi equations with critical exponents or in two space dimensions. J Differential Equations, 2017, 263(12): 8102-8137
doi: 10.1016/j.jde.2017.08.033 |
[9] | He D Y, Witt I, Yin H C. On the Strauss index of semilinear Tricomi equation. Commun Pure Appl Anal, 2020, 19(10): 4817-4838 |
[10] |
Chen W H, Lucente S, Palmieri A. Nonexistence of global solutions for generalized Tricomi equations with combined nonlinearity. Nonlinear Anal Real World Appl, 2021, 61: 103354
doi: 10.1016/j.nonrwa.2021.103354 |
[11] |
Palmieri A. Blow-up results for semilinear damped wave equations in Einstein-de Sitter spacetime. Z Angew Math Phys, 2021, 72: Article 64
doi: 10.1007/s00033-021-01494-x |
[12] | Palmieri A. On the the critical exponent for the semilinear Euler-Poisson-Darboux-Tricomi equation with power nonlinearity. Preprint, arXiv:2105.09879(2021) |
[13] |
Chen W H. Interplay effects on blow-up of weakly coupled systems for semilinear wave equations with general nonlinear memory terms. Nonlinear Anal, 2021, 202: 112160
doi: 10.1016/j.na.2020.112160 |
[14] |
Chen W H, Reissig M. Blow-up of solutions to Nakao's problem via an iteration argument. J Differential Equations, 2021, 275: 733-756
doi: 10.1016/j.jde.2020.11.009 |
[15] |
Chen W H, Palmieri A. Nonexistence of global solutions for the semilinear Moore-Gibson-Thompson equation in the conservative case. Discrete Contin Dyn Syst, 2020, 40: 5513-5540
doi: 10.3934/dcds.2020236 |
[16] |
Chen W H, Palmieri A. Weakly coupled system of semilinear wave equations with distinct scale-invariant terms in the linear part. Z Angew Math Phys, 2019, 70(2): Article 67
doi: 10.1007/s00033-019-1112-4 |
[17] |
Chen W H, Ikehata R. The Cauchy problem for the Moore-Gibson-Thompson equation in the dissipative case. J Differential Equations, 2021, 292: 176-219
doi: 10.1016/j.jde.2021.05.011 |
[18] | 欧阳柏平, 肖胜中. 具有非线性记忆项的半线性双波动方程解的全局非存在性. 数学物理学报, 2021, 41A(5): 1372-1381 |
Ouyang B P, Xiao S Z. Nonexistence of global solutions for a semilinear Double-Wave equation with a nonlinear memory term. Acta Mathematica Scientia, 2021, 41A(5): 1372-1381 | |
[19] |
Lai N A, Takamura H, Wakasa K. Blow-up for semilinear wave equations with the scale invariant damping and super-Fujita exponent. J Differential Equations, 2017, 263: 5377-5394
doi: 10.1016/j.jde.2017.06.017 |
[20] |
Palmieri A, Takamura A. Blow-up for a weekly coupled system of semilinear damped wave equations in the scattering case with power nonlinearities. Nonlinear Anal, 2019, 187: 467-492
doi: 10.1016/j.na.2019.06.016 |
[21] |
Yordanov B T, Zhang Q S. Finite time blow up for critical wave equations in high dimensions. J Funct Anal, 2006, 231(2): 361-374
doi: 10.1016/j.jfa.2005.03.012 |
[22] | Lai N A, Takamura H. Nonexistence of global solutions of nonlinear wave equations with weak time-dependent damping related to Glassey's conjecture. Differ Integral Equ, 2019, 32: 37-48 |
[23] | Olver F W J, Lozier D W, Boisvert R F, Clark C W. NIST Handbook of Mathematical Functions. New York: Cambridge University Press, 2010 |
[24] |
Palmieri A, Reissig M. A competition between Fujita and Strauss type exponents for blow-up of semi-linear wave equations with scale-invariant damping and mass. J Differ Equ, 2019, 266(2/3): 1176-1220
doi: 10.1016/j.jde.2018.07.061 |
[1] | Feng Meiqiang, Zhang Xuemei. On the Optimal Global Estimates of Boundary Blow-up Solutions to the Monge-Ampère Equation [J]. Acta mathematica scientia,Series A, 2023, 43(1): 181-202. |
[2] | Zhen Qiu,Guangwu Wang. Blow-Up of the Smooth Solutions to the Quantum Navier-Stokes-Landau-Lifshitz Equations [J]. Acta mathematica scientia,Series A, 2022, 42(4): 1074-1088. |
[3] | Lianfeng Yang,Xiaoyu Zeng. Existence and Blow-Up Behavior of Ground State Solutions for Pseudo-Relativistic Schrödinger Equations [J]. Acta mathematica scientia,Series A, 2022, 42(1): 165-175. |
[4] | Yuge Du,Shuying Tian. Existence and Blow-Up of a Parabolic Equation with Logarithmic Nonlinearity [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1816-1829. |
[5] | Jingran He,Helin Guo,Wenqing Wang. A p-Laplace Eigenvalue Problem with Coercive Potentials [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1323-1332. |
[6] | Hui Yang,Yuzhu Han. Blow-Up Properties of Solutions to a Class of Parabolic Type Kirchhoff Equations [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1333-1346. |
[7] | Baiping Ouyang,Shengzhong Xiao. Nonexistence of Global Solutions for a Semilinear Double-Wave Equation with a Nonlinear Memory Term [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1372-1381. |
[8] | Shoufu Tian. On the Behavior of the Solution of a Weakly Dissipative Modified Two-Component Dullin-Gottwald-Holm System [J]. Acta mathematica scientia,Series A, 2020, 40(5): 1204-1223. |
[9] | Xiaoli Han. Multiple Pertubations to a Quasilinear Schrödinger Equation [J]. Acta mathematica scientia,Series A, 2020, 40(4): 869-881. |
[10] | Yadong Zheng,Zhongbo Fang. Blow-Up Analysis for a Weakly Coupled Reaction-Diffusion System with Gradient Sources Terms and Time-Dependent Coefficients [J]. Acta mathematica scientia,Series A, 2020, 40(3): 735-755. |
[11] | Danni Ma,Zhongbo Fang. Blow-Up Phenomenon for a Coupled Diffusion System with Exponential Reaction Terms and Space-Dependent Coefficients [J]. Acta mathematica scientia,Series A, 2019, 39(6): 1456-1475. |
[12] | Siqian Qin,Zhengqiu Ling,Zewen Zhou. Some Methods for Determining the Lower Bound of Blow-up Time in a Parabolic Problem and Effectiveness Analysis [J]. Acta mathematica scientia,Series A, 2019, 39(5): 1033-1040. |
[13] | Yafeng Li,Qiao Xin,Chunlai Mu. The Discrete Possion Equation and the Heat Equation with the Exponential Nonlinear Term [J]. Acta mathematica scientia,Series A, 2019, 39(4): 773-784. |
[14] | Qunfei Long,Jianqing Chen. Blow-Up Phenomena of Solutions for a Class of Viscous Cahn-Hilliard Equation with Gradient Dependent Potentials and Sources [J]. Acta mathematica scientia,Series A, 2019, 39(3): 510-517. |
[15] | Ting Ji,Lianggen Hu,Jing Zeng. The Non-Existence of Non-Radial Blow-Up Solutions for the Quasilinear Elliptic System [J]. Acta mathematica scientia,Series A, 2019, 39(2): 307-315. |
|