Acta mathematica scientia,Series A ›› 2022, Vol. 42 ›› Issue (6): 1653-1670.
Previous Articles Next Articles
Received:
2021-10-24
Online:
2022-12-26
Published:
2022-12-16
Contact:
Maojun Bin
E-mail:bmj1999@163.com
Supported by:
CLC Number:
Cuiyun Shi,Maojun Bin. On the Bang-Bang Principle for Differential Variational Inequalities in Banach Spaces[J].Acta mathematica scientia,Series A, 2022, 42(6): 1653-1670.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | Aubin J P , Cellina A . Differential Inclusions: Set-Valued Maps and Viability Theory. Berlin: Springer-Verlag, 1984 |
2 | Avgerinos E P , Papageorgiou N S . Differential variational inequalities in $R.N$. Indian Journal of Pure and Applied Mathematics, 1997, 28, 475- 498 |
3 |
Bin M J . Time optimal control for semilinear fractional evolution feedback control systems. Optimization, 2019, 68 (4): 819- 832
doi: 10.1080/02331934.2018.1552956 |
4 |
Bin M J , Deng H Y , Li Y X , Zhao J . Properties of the set of admissible "state control" part for a class of fractional semilinear evolution control systems. Fract Calc Appl Anal, 2021, 24 (4): 1275- 1298
doi: 10.1515/fca-2021-0055 |
5 |
Bin M J , Liu Z H . On the "bang-bang" principle for nonlinear evolution hemivariational inequalities control systems. J Math Anal Appl, 2019, 480 (1): 123364
doi: 10.1016/j.jmaa.2019.07.054 |
6 |
Bin M J , Liu Z H . Relaxation in nonconvex optimal control for nonlinear evolution hemivariational inequalities. Nonlinear Analysis: Real World Applications, 2019, 50, 613- 632
doi: 10.1016/j.nonrwa.2019.05.013 |
7 | Bohnenblust H F, Karlin S. On a theorem of ville//Kuhn H W, Tucker A W. Contributions to the Theory of Games, Vol I. Princeton, NJ: Princeton University Press, 1950: 155-160 |
8 | Bressan A . Differential inclusions with non-closed, non-convex right hand side. Diff Integral Equ, 1990, 3, 633- 638 |
9 |
Chen X J , Wang Z Y . Differential variational inequality approach to dynamic games with shared constraints. Math Program Ser A, 2014, 146, 379- 408
doi: 10.1007/s10107-013-0689-1 |
10 |
Chen Y Q , O'Regan D , Agarwal R P . Anti-periodic solutions for evolution equations associated with monotone type mappings. Appl Math Lett, 2010, 23 (11): 1320- 1325
doi: 10.1016/j.aml.2010.06.022 |
11 | Deimling K . Multivalued Differential Equations. Berlin: De Gruyter, 1992 |
12 |
Fan K . Some properties of convex sets related to fixed point theorems. Math Ann, 1984, 266, 519- 537
doi: 10.1007/BF01458545 |
13 |
Friesz T L , Bernstein D , Suo Z , Tobin R . Dynamic network user equilibrium with state-dependent time lags. Networks and Spatial Economics, 2001, 1 (3/4): 319- 347
doi: 10.1023/A:1012896228490 |
14 |
Friesz T L , Rigdon M A , Mookherjee R . Differential variational inequalities and shipper dynamic oligopolistic network competition. Transportation Research Part B, 2006, 40, 480- 503
doi: 10.1016/j.trb.2005.07.002 |
15 |
Fryszkowski A . Continuous selections for a class of nonconvex multivalued maps. Studia Math, 1983, 76, 163- 174
doi: 10.4064/sm-76-2-163-174 |
16 |
Himmelberg C J . Measurable relations. Fund Math, 1975, 87, 53- 72
doi: 10.4064/fm-87-1-53-72 |
17 | Hu S , Papageorgiou N S . Handbook of Multivalued Analysis, Volume I: Theory. New York: Springer, 1997 |
18 | Kamemskii M , Obukhovskii V , Zecca P . Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Space. Berlin: Water de Gruyter, 2001 |
19 |
Ke T D , Loi N V , Obukhovskii V . Decay solutions for a class of fractional differential variational inequalities. Fract Calc Appl Anal, 2015, 18, 531- 553
doi: 10.1515/fca-2015-0033 |
20 |
Li X S , Huang N J , Donal O R . A class of impulsive differential variational inequalities in finite dimensional spaces. J Franklin Inst, 2016, 353 (13): 3151- 3175
doi: 10.1016/j.jfranklin.2016.06.011 |
21 | Liu X Y , Liu Z H . On the "bang-bang" principle for a class of fractional semilinear evolution inclusions. Proc Royal Soc Edinburgh, 2014, 44 (2): 333- 349 |
22 |
Liu X Y , Liu Z H , Fu X . Relaxation in nonconvex optimal control problems described by fractional differential equations. J Math Anal Appl, 2014, 409 (1): 446- 458
doi: 10.1016/j.jmaa.2013.07.032 |
23 |
Liu Z H , Bin M J , Liu X Y . On the "bang-bang" principle for a class of Riemann-Liouville fractional semilinear evolution inclusions. Mathematica Slovaca, 2016, 66 (6): 1329- 1344
doi: 10.1515/ms-2016-0226 |
24 |
Lightbourne J H , Rankin S M . A partial functional differential equation of Sobolev type. J Math Anal Appl, 1983, 93, 328- 337
doi: 10.1016/0022-247X(83)90178-6 |
25 |
Liu Z H , Migórski S , Zeng S D . Partial differential variational inequalities involving nonlocal boundary conditions in Banach spaces. J Differ Equ, 2017, 263 (7): 3989- 4006
doi: 10.1016/j.jde.2017.05.010 |
26 | Liu Z H , Zeng S D . Differential variational inequalities in infinite Banach spaces. Acta Math Sci, 2017, 37B (1): 26- 32 |
27 |
Liu Z H , Zeng S D . Penalty method for a class of differential variational inequalities. Applicable Analysis, 2021, 100 (7): 1574- 1589
doi: 10.1080/00036811.2019.1652736 |
28 |
Liu Z H , Zeng S D , Motreanu D . Evolutionary problems driven by variational inequalities. J Diff Equ, 2016, 260, 6787- 6799
doi: 10.1016/j.jde.2016.01.012 |
29 |
Lu L , Liu Z H , Jiang W , Luo J . Solvability and optimal controls for semilinear fractional evolution hemivariational inequalities. Math Methods Appl Sci, 2016, 39, 5452- 5464
doi: 10.1002/mma.3930 |
30 |
Lu L , Liu Z H , Obukhovskii V . Second order differential variational inequalities involving anti-periodic boundary value conditions. Journal of Mathematical Analysis and Applications, 2019, 473 (2): 846- 865
doi: 10.1016/j.jmaa.2018.12.072 |
31 |
Melanz D , Jayakumar P , Negrut D . Experimental validation of a differential variational inequality-based approach for handling friction and contact in vehicle/granular-terrain interactio. J Terramechanics, 2016, 65, 1- 13
doi: 10.1016/j.jterra.2016.01.004 |
32 | Migórski S , Ochal A , Sofonea M . Nonlinear Inclusions and Hemivariational Inequalities: Models and Analysis of Contact Problems. New York: Springer, 2013 |
33 |
Pang J S , Stewart D E . Differential variational inequalities. Math Program, 2008, 113, 345- 424
doi: 10.1007/s10107-006-0052-x |
34 |
Papageorgiou N S . On the "bang-bang" principle for nonlinear evolution inclusions. Aequationes Math, 1993, 45, 267- 280
doi: 10.1007/BF01855884 |
35 | Pazy A . Semigroups of Linear Operators and Applications to Partial Differential Equations. New York: Springer-Verlag, 1983 |
36 | Royden H L . Real Analysis. New Jersey: Prentice-Hall, Englewood Cliffs, 1988 |
37 | Suslov S I . Nonlinear bang-bang principle in Rn. Mat Zametki, 1991, 49 (5): 110- 116 |
38 | Tolstonogov A A . Extremal selections of multivalued mappings and the "bang-bang" principle for evolution inclusions. Dokl Akad Nauk SSSR, 1991, 317, 589- 593 |
39 |
Tolstonogov A A . Relaxation in non-convex control problems described by first-order evolution equations. Math Sb, 1999, 190 (11): 135- 160
doi: 10.4213/sm441 |
40 |
Tolstonogov A A . Properties of the set of admissible "state-control" pairs for first-order evolution control systems. Izvestiya: Math, 2001, 65 (3): 617- 640
doi: 10.1070/IM2001v065n03ABEH000343 |
41 |
Tolstonogov A A . Relaxation in nonconvex optimal control problems with subdifferential operators. J Math Sci, 2007, 140 (6): 850- 872
doi: 10.1007/s10958-007-0021-9 |
42 |
Tolstonogov A A . Relaxation in control systems of subdifferential type. Izvestiya Math, 2006, 70 (1): 121- 152
doi: 10.1070/IM2006v070n01ABEH002306 |
43 |
Tolstonogov A A , Tolstonogov D A . On the "bang-bang" principle for nonlinear evolution inclusions. Nonlinear Differ Equa Appl, 1999, 6, 101- 118
doi: 10.1007/s000300050067 |
44 |
Tolstonogov A A , Tolstonogov D A . Lp-continuous extreme selectors of multifunctions with decomposable values: Existence theorems. Set-Valued Anal, 1996, 4, 173- 203
doi: 10.1007/BF00425964 |
45 |
Tolstonogov A A , Tolstonogov D A . Lp-continuous extreme selectors of multifunctions with decomposable values: Relaxation theorems. Set-Valued Anal, 1996, 4, 237- 269
doi: 10.1007/BF00419367 |
46 | Zeidler E. . Nonlinear Functional Analysisand Its Applications. Ⅱ/B: Nonlinear Monotone Operators. Berlin: Springer-Verlag, 1990 |
47 |
Zhu Q J . On the solution set of differential inclusions in Banach space. J Differ Equ, 1991, 93 (2): 213- 237
doi: 10.1016/0022-0396(91)90011-W |
[1] | Bin ZHU, Xiaojun HUANG, Yuan LIAN. THE SYSTEMS WITH ALMOST BANACH-MEAN EQUICONTINUITY FOR ABELIAN GROUP ACTIONS [J]. Acta mathematica scientia,Series A, 2022, 42(3): 919-940. |
[2] | Zaiyun Zhang,Zhenhai Liu,Youjun Deng. Global Existence and General Decay for a Nonlinear Viscoelastic Equation with Time-Varying Delay and Velocity-Dependent Material Density [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1684-1704. |
[3] | Shangxi Guo. Existence of Global Strong Solutions for Initial Value Problems of One-Dimensional Compressible Navier-Stokes Equations [J]. Acta mathematica scientia,Series A, 2021, 41(3): 642-651. |
[4] | Haiyin Li. Hopf Bifurcation of Delayed Density-Dependent Predator-Prey Model [J]. Acta mathematica scientia,Series A, 2019, 39(2): 358-371. |
[5] | Feng Baowei, Su Keqin. Uniform Decay for a Fourth-Order Viscoelastic Equation with Density in Rn [J]. Acta mathematica scientia,Series A, 2018, 38(1): 122-133. |
[6] | Deng Jiqin, Deng Ziming. Existence and Uniqueness of Solutions for Nonlocal Cauchy Problem for Fractional Evolution Equations [J]. Acta mathematica scientia,Series A, 2016, 36(6): 1157-1164. |
[7] | YE Yu-Lin, DOU Chang-Sheng, JIU Quan-Sen. LOCAL WELL-POSEDNESS TO THE CAUCHY PROBLEM OF THE 3-D COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH DENSITY-DEPENDENT VISCOSITY [J]. Acta mathematica scientia,Series A, 2014, 34(3): 851-871. |
[8] | ZHANG Shen-Yuan, QIU Jing-Hui. Monotone Minkowski Functionals and Scalarizations of Henig Proper Efficiency [J]. Acta mathematica scientia,Series A, 2014, 34(3): 581-592. |
[9] | LING Neng-Xiang, DING Jie. Asymptotic Properties of Conditional Density Estimation for Dependence Functional Data [J]. Acta mathematica scientia,Series A, 2012, 32(3): 547-556. |
[10] | XIE Feng-Fan, HU Shi-Geng. On Buffon Problem for Bounded Lattices in E3 [J]. Acta mathematica scientia,Series A, 2011, 31(2): 410-414. |
[11] | CHEN Chuan-Zhong, HAN Xin-Fang, MA Li. Some New Results about Asymptotic Properties of Additive Functionals of Brownian Motion [J]. Acta mathematica scientia,Series A, 2010, 30(6): 1485-1494. |
[12] | CHAI Fu-Jie. The Density of the Common Value-points of Two Algebroidal Functions and the Uniqueness Theorems [J]. Acta mathematica scientia,Series A, 2009, 29(6): 1765-1770. |
[13] | LI Li-Na, GAO Fu-Qing. Rates of Strong Uniform Consistency for Kernel Density Estimators of Directional Data [J]. Acta mathematica scientia,Series A, 2009, 29(3): 707-715. |
[14] |
Zhang Ting.
Discontinuous Solutions of the Navier-Stokes Equations for Compressible Flow with Density-Dependent Viscosity [J]. Acta mathematica scientia,Series A, 2008, 28(2): 214-221. |
[15] | Liu Xiaopeng; Liu Kunhui. The Changes of F Distribution Density Curve [J]. Acta mathematica scientia,Series A, 2007, 27(2): 331-342. |
|