[1] Sylvester J. Sur l'équation en matrices $px-xq$. Comptes Rendus Mathematique, 1884, 99:67-71 [2] Roth W E. The equation $AX-YB=C$ and $AX-XB=C$ in matrices. Proceedings of the American Mathematical Society, 1952, 3(3):392-396 [3] Wimmer H K. The matrix equation $X-AXB=C$ and analogue of Roth's theorem. Linear Algebra and its Applications, 1988, 109:145-147 [4] Lee S G, Vu Q P. Simultaneous solutions of matrix equations and simultaneous equivalence of matrices. Linear Algebra and its Applications, 2012, 437(9):2325-2339 [5] Dmytryshyn A, Kaöm B. Coupled Sylvester-type matrix equations and block diagonalization. SIAM Journal on Matrix Analysis and Applications, 2015, 36(2):580-593 [6] Eric C. The solution of the matrix equations $AXB-CXD=E$ and $(YA-DZ, YC-BZ)=(E, F)$. Linear Algebra and its Applications, 1987, 93(87):93-105 [7] Baksalary J K, Kala R. The matrix equation $AXB+CYD=E$. Linear Algebra and its Applications, 1980, 30(1):141-147 [8] Rehman A, Wang Q W, Ali I, et al. A constraint system of generalized Sylvester quaternion matrix equations. Advances in Applied Clifford Algebras, 2017, 27(11):3183-3196 [9] He Z H, Wang Q W, Zhang Y. A system of quaternary coupled Sylvester-type real quaternion matrix equations. Automatica, 2018, 87(7):25-31 [10] Liu X, Song G J, Zhang Y. Determinantal representations of the solutions to systems of generalized Sylvester equations. Advances in Applied Clifford Algebras, 2019, 30:Article number 12 [11] Djordjevi B D. On a singular Sylvester equation with unbounded self-adjoint $A$ and $B$. Complex Analysis and Operator Theory, 2020, 14:Article number 43 [12] Chen H X, Wang L, Li T T. A note on the solvability for generalized Sylvester equations. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matemáticas. 2021, 115:Article number 64 [13] Wang Q W, Sun J H, Li S Z. Consistency for bi(skew)symmetric solutions to systems of generalized Sylvester equations over a finite central algebra. Linear Algebra and its Applications, 2002, 353(1):169-182 [14] Wang Q W, He Z H. Solvability conditions and general solution for mixed Sylvester equations. Automatica. 2013, 49(9):2713-2719 [15] Wang Q W, He Z H, Zhang Y. Constrained two-sided coupled Sylvester-type quaternion matrix equations. Automatica, 2019, 101:207-213 [16] Wang Q W, Wang X, Zhang Y S. A constraint system of coupled two-sided Sylvester-like quaternion tensor equations. Computational and Applied Mathematics, 2020, 39:Article number 317 [17] Wang Q W, Wang X. A system of coupled two-sided Sylvester-type tensor equations over the quaternion algebra. Taiwanese Journal of Mathematics, 2020, 24(6):1399-1416 [18] Rosenblum M. The operator equation $BX-XA=Q$ with selfadjoint $A$ and $B$. Proceeding of the American Mathematical Society, 1969, 20(1):115-120 [19] Schweinsberg A. The operator equation $AX-XB=C$ with normal $A$ and $B$. Pacific Journal of Mathematics, 1982, 102(2):447-453 [20] Mansour A. Solvability of $AXB-CXD=E$ in the operators algebra $B(H)$. Lobachevskii Journal of Mathematics, 2010, 31(3):257-261 [21] 童裕孙.关于算子方程$AXB-X=C$.数学年刊, 1986, 7(3):325-337 Tong Y S. On the operator equation $AXB-X=C$. Chinese Ann Math Ser A, 1986, 7(3):325-337 [22] 严绍宗,李绍宽.关于Putnam-Fuglede定理.中国科学(A辑), 1984, 9:775-783 Yan S Z, Li S K. On Putnam-Fuglede theorem. Science China(Series A), 1984, 9:775-783 [23] Weiss G. The Fuglede commutativity theorem modulo the Hilbert-Schmidt class and generating functions for matrix operators II. Journal of Operator Theory, 1981, 5(1):3-16 |