[1] |
Auslander J. Mean-L-stable systems.Illinois. J Math, 1959, 3:566-579
|
[2] |
Auslander J. Minimal Flows and Their Extensions. North-Holland, 1988
|
[3] |
Akin E, Auslander J, Berg B. When is a transitive map chaotic?//Convergence in Ergodic Theory and Probability (Conlumbus, OH, 1993) (Ohio State University Mathematic Research Institute Publication, 5). Berlin:de Gruyter, 1996:25-40
|
[4] |
Beiglböck M, Vitaly Bergelson V, Fish A. Sumset phenomenon in countable amenable groups. Adv Math, 2010, 223:416-432
|
[5] |
Baake M, Lenz D, Moody R V. Characterization of model sets by dynamical systems. Ergos Th & Dynam Sys, 2007, 27(2):341-382
|
[6] |
Ceccherini-Silberstein T, Coornaert M. Cellular Automata and Groups. Springer-Verlag, 2010
|
[7] |
Denker M, Grillenberger C, Sigmund K. Ergodic Theory on Compact Spaces//Lecture Notes in Mathematics. Vol 527. Berlin:Springer, 1976
|
[8] |
Downarowicz T, Huczek D, Zhang G. Tilings of amenable groups. J Reine Angew Math, 2019, 747:277-298
|
[9] |
Fomin S. On dynamical systems with pure point spectrum. Dokl Akad Nauk SSSR, 1951, 77(4):29-32 (in Russian)
|
[10] |
Furstenberg H. Recurrence in Ergodic Theory and Combinatorial Number Theory, Porter Lectures M B. N J, Princeton:Princeton University Press, 1981
|
[11] |
Fuhrmann G, Gröger M, Lenz D. The structure of mean equicontinuous group actions. arXiv preprint. https://arxiv.org/pdf/1812.10219v1
|
[12] |
García-Ramos F. Weak forms of topological and measure theoretical equicontinuity:relationships with discrete spectrum and sequence entropy. Ergos Th & Dynam Sys, 2017, 37(4):1211-1237
|
[13] |
García-Ramos F, Marcus B. Mean sensitive, mean equicontinuous and almost periodic functions for dynamical systems. Discrete Contin Dyn Syst, 2019, 39(2):729-746
|
[14] |
Glasner S, Maon D. Rigidity in topological dynamicals. Ergos Th & Dynam Sys, 1989, 9:309-320
|
[15] |
Glasner E, Weiss B. Sensitive dependence on initial conditions. Nonlinearity, 1993, 6(6):1067-1075
|
[16] |
Huang X, Liu J, Zhu C. The Bowen topological entropy of subsets for amenable group actions. J Math Anal Appl, 2019, 472(2):1678-1715
|
[17] |
Li J, Tu S, Ye X. Mean equicontinuity and mean sensitivity. Ergod Th Dynam Sys, 2015, 35(8):2587-2612
|
[18] |
Huang W, et al. Mean equicontinuity, bounded complexity and discrete spectrum. Ergos Th & Dynam Sys, 2021, 41:494-533
|
[19] |
Huang W, Ye X, Zhang G. Local entropy theory for a countable discrete amenable group action. Journal of Functional Analysis, 2011, 261(4):1028-1082
|
[20] |
Łącka M, Pietrzyk M. Quasi-uniform convergence in dynamical systems generated by an amenable group action. J Lond Math Soc, 2018, 98(2):687-707
|
[21] |
Kerr D, Li H. Ergodic Theory:Independence and Dichotomies. Springer, 2016
|
[22] |
Parthasarathy K R. Probability measures on metric spaces. New York:Academic Press Inc, 1967
|
[23] |
Sigmund K. On minimal centers of attraction and generic points. J Reine Angew Math, 1977, 295:72-79
|
[24] |
Scarpellini B. Stability properties of flows with pure point spectrum. J London Math Soc, 1982, 26(2):451-464
|
[25] |
Walters P. An Introduction to Ergodic Theory. New York:Springer, 1982
|