Acta mathematica scientia,Series A ›› 2022, Vol. 42 ›› Issue (3): 1141-1159.doi: 10.1007/s10473-022-0319-1
• Articles • Previous Articles Next Articles
Mingzhan HUANG1, Shouzong LIU1, Xinyu SONG1, Xiufen ZOU2
Received:
2020-12-18
Revised:
2021-04-11
Online:
2022-06-26
Published:
2022-06-24
Contact:
Xinyu SONG,E-mail:xysong88@163.com
E-mail:xysong88@163.com
Supported by:
CLC Number:
Mingzhan HUANG, Shouzong LIU, Xinyu SONG, Xiufen ZOU. CONTROL STRATEGIES FOR A TUMOR-IMMUNE SYSTEM WITH IMPULSIVE DRUG DELIVERY UNDER A RANDOM ENVIRONMENT[J].Acta mathematica scientia,Series A, 2022, 42(3): 1141-1159.
[1] | Ahmedin J, Freddie B, Melissa M C, et al. Global cancer statistics. CA:A Cancer Journal for Clinicians, 2011, 61(2):69-90 |
[2] | Freddie B, Jacques F, Isabelle S, et al. Global cancer statistics 2018:globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA:A Cancer Journal for Clinicians, 2018, 68(6):394-424 |
[3] | World Health Organization. World health statistics 2016:mMonitoring hHealth for the SDGs sustainable development goals. Geneva, Switzerland:World Health Organization, 2016 |
[4] | Lindsey A T, Freddie B, Rebecca L S, et al. Global cancer statistics, 2012. CA:A Cancer Journal for Clinicians, 2015, 65(2):87-108 |
[5] | Marek B, Monika J P. Stability analysis of the family of tumour angiogenesis models with distributed time delays. Commun Nonlinear Sci Numer Simul, 2016, 31(1/8):124-142 |
[6] | Liu X D, Li Q Z, Pan J X. A deterministic and stochastic model for the system dynamics of tumor-immune responses to chemotherapy. Physica A:Statistical Mechanics and its Applications, 2018, 500:162-176 |
[7] | Bellomo N, Preziosi L. Modelling and mathematical problems related to tumor evolution and its interaction with the immune system. Math Comput Modell, 2000, 32(3/8):413-452 |
[8] | Pillis L G D, Radunskaya A E, Wiseman C L. A validated mathematical model of cell-mediated immune response to tumor growth. Cancer Res, 2005, 65:235-252 |
[9] | Radouane Y. Hopf bifurcation in differential equations with delay for tumor-immune system competition model. SIAM J Appl Math, 2007, 67(6):1693-1703 |
[10] | Saleem M, Tanuja A. Chaos in a tumor growth model with delayed responses of the immune system. J Appl Math, 2012, 2012:1-16 |
[11] | Wang S L, Wang S L, Song X Y. Hopf bifurcation analysis in a delayed oncolytic virus dynamics with continuous control. Nonlinear Dynam, 2012, 67(1):629-640 |
[12] | Dong Y P, Rinko M, Yasuhiro T. Mathematical modeling on helper t cells in a tumor immune system. Discrete Contin Dyn Syst -Ser B, 2014, 19(1):55-72 |
[13] | Fuat G, Senol K, Ilhan O, Fatma B. Stability and bifurcation analysis of a mathematical model for tumor cimmune interaction with piecewise constant arguments of delay. Chaos Solitons Fractals, 2014, 68:169-179 |
[14] | Subhas K, Sandip B. Stability and bifurcation analysis of delay induced tumor immune interaction model. Appl Math Comput, 2014, 248:652-671 |
[15] | Rihan F A, Rahman D H A, Lakshmanan S, Alkhajeh A S. A time delay model of tumour-immune system interactions:global dynamics, parameter estimation, sensitivity analysis. Appl Math Comput, 2014, 232(1):606-623 |
[16] | Subhas K. Bifurcation analysis of a delayed mathematical model for tumor growth. Chaos Solitons Fractals, 2015, 77:264-276 |
[17] | Dong Y P, Huang G, Rinko M, Yasuhiro T. Dynamics in a tumor immune system with time delays. Appl Math Comput, 2015, 252:99-113 |
[18] | Pang L Y, Shen L, Zhao Z. Mathematical modelling and analysis of the tumor treatment regimens with pulsed immunotherapy and chemotherapy. Comput Math Methods Med, 2016 (2016) |
[19] | López A G, Seoane J M, Sanjuán M A F. Bifurcation analysis and nonlinear decay of a tumor in the presence of an immune response. Int J Bifurcat Chaos, 2017, 27(14):1750223 |
[20] | Ansarizadeh F, Singh M, Richards D. Modelling of tumor cells regression in response to chemotherapeutic treatment. Applied Mathematical Modelling, 2017, 48:96-112 |
[21] | López A G, Iarosz K C, Batista A M, et al. Nonlinear cancer chemotherapy:modelling the NortonSimon hypothesis. Commun Nonlinear Sci Numer Simulat, 2019, 70:307-317 |
[22] | Lisette G D P, Radunskaya A. The dynamics of an optimally controlled tumor model:a case study. Math Comput Modelling, 2003, 37(11):1221-1244 |
[23] | Lisette G D P, Gu W, Fister K R, et al. Chemotherapy for tumors:an analysis of the dynamics and a study of quadratic and linear optimal controls. Math Biosci, 2007, 209(1):292-315 |
[24] | Alberto D O, Urszula L, Helmut M, Heinz S. On optimal delivery of combination therapy for tumors. Math Biosci, 2009, 222(1):13-26 |
[25] | Mehmet I, Metin U S, Stephen P B. Optimal control of drug therapy in cancer treatment. Nonlinear Analysis:Theory. Methods & Applications, 2009, 71(12):e1473-e1486 |
[26] | Rihan F A, Abdelrahman D H, Al-Maskari F, et al. Delay differential model for tumour-immune response with chemoimmunotherapy and optimal control. Comput Math Methods Med, 2014 (2014):1-15 |
[27] | Pang L Y, Zhao Z, Song X Y. Cost-effectiveness analysis of optimal strategy for tumor treatment. Chaos Solitons Fractals, 2016, 87:293-301 |
[28] | Sarkar R R, Sandip B. Cancer self remission and tumor stability-a stochastic approach. Math Biosci, 2005, 196(1):65-81 |
[29] | Albano G, Giorno V. A stochastic model in tumor growth. J Theoret Biol, 2006, 242(2):329-336 |
[30] | Thomas B, Steffen T. Stochastic model for tumor growth with immunization. Phys Rev E, 2009, 79(5):051903 |
[31] | Xu Y, Feng J, Li J J, Zhang H Q. Stochastic bifurcation for a tumor-immune system with symmetric lvy noise. Physica A:Statal Mechanics and its Applications, 2013, 392(20):4739-4748 |
[32] | Kim K S, Kim S, Jung I H. Dynamics of tumor virotherapy:a deterministic and stochastic model approach. Stoch Anal Appl, 2016, 34(3):483-495 |
[33] | Deng Y, Liu M. Analysis of a stochastic tumor-immune model with regime switching and impulsive perturbations. Applied Mathematical Modelling, 2020, 78:482-504 |
[34] | Bashkirtseva I, Ryashko L, Dawson K A, et al. Analysis of noise-induced phenomena in the nonlinear tumor-mmune system. Physica A:Statal Mechanics and its Applications, 2019, 549:123923 |
[35] | Samanta G P, Ricardo G A, Sharma S. Analysis of a mathematical model of periodically pulsed chemotherapy treatment. International Journal of Dynamics and Control, 2015, 5(3):842-857 |
[36] | Samanta G P, Sen P, Maiti A. A delayed epidemic model of diseases through droplet infection and direct contact with saturation incidence and pulse vaccination. Systems Science and Control Engineering, 2016, 4(1):320-333 |
[37] | Samanta G P, Ricardo G A. Analysis of a delayed epidemic model of diseases through droplet infection and direct contact with pulse vaccination. International Journal of Dynamics and Control, 2015, 3(3):275-287 |
[38] | Samanta G P. Mathematical Analysis of a Chlamydia Epidemic Model with Pulse Vaccination Strategy. Acta Biotheoretica, 2015, 63(1):1-21 |
[39] | Samanta G P, Sharma S. Analysis of a delayed Chlamydia epidemic model with pulse vaccination. Applied Mathematics and Computation, 2014, 230:555-569 |
[40] | Samanta G P. Analysis of a delayed epidemic model with pulse vaccination. Chaos, Solitons and Fractals, 2014, 66:74-85 |
[41] | Samanta G P, Bera S P. Analysis of a Chlamydia epidemic model with pulse vaccination strategy in a random environment. Nonlinear Analysis:Modelling and Control, 2018, 23(4):457-474 |
[42] | Jing Y, Mei L Q, Song X Y, Tian W J, Ding X M. Analysis of an impulsive epidemic model with time delays and nonlinear incidence rate. Acta Mathematica Scientia, 2012, 32A(4):670-684 |
[43] | Ling L, Liu S Y, Jiang G R. Bifurcation analysis of a SIRS epidemic model with saturating contact rate and vertical transmission. Acta Mathematica Scientia, 2014, 34A(6):1415-1425 |
[44] | Ma Z E, Cui G R, Wang W D. Persistence and extinction of a population in a polluted environment. Math Biosci, 1990, 101:75-97 |
[45] | Ma Z E, Hallam T G. Effects of parameter fluctuations on community survival. Math Biosci, 1987, 86(1):35-49 |
[46] | Liu M, Wang K. Persistence and extinction in stochastic non-autonomous logistic systems. J Math Anal Appl, 2011, 375(2):443-57 |
[47] | Li D X, Cheng F J. Threshold for extinction and survival in stochastic tumor immune system. Communications in Nonlinear ence & Numerical Simulations, 2017, 51(OCT):1-12 |
[48] | Lan G J, Ye C, Zhang S W, Wei C J. Dynamics of a stochastic glucose-insulin model with impulsive injection of insulin. Commun Math Biol Neurosci, 2020, 2020:6 |
[49] | Kloeden P E, Platen E. Numerical solution of stochastic differential equations. New York:Springer-Verlag, 1992 |
[50] | Shochat E, Hart D, Agur Z. Using computer simulations for evaluating the efficacy of breast cancer chemotherapy protocols. Mathematical Models and Methods in Applied Sciences, 1999, 9(4):599-615 |
[1] | Liya Liu,Daqing Jiang. Global Dynamics of a Stochastic Chemostat Model with General Response Function and Wall Growth [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1912-1924. |
[2] | Dandan Sun,Yingke Li,Zhidong Teng,Tailei Zhang. Analysis of the Stability for Measles Epidemic Model with Age-Structured [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1950-1968. |
[3] | Xin Xie,Jianquan Li,Yuping Wang,Dian Zhang. A Qualitative Analysis of a Tumor-Immune System with Antigenicity [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1969-1979. |
[4] | Shuangming Wang,Xingman Fan,Mingjun Zhang,Junrong Liang. The Dynamics of an SEIR Epidemic Model with Time-Periodic Latent Period [J]. Acta mathematica scientia,Series A, 2020, 40(2): 527-539. |
[5] | Zhongwei Cao,Xiangdan Wen,Wei Feng,Li Zu. Dynamics of a Nonautonomous SIRI Epidemic Model with Random Perturbations [J]. Acta mathematica scientia,Series A, 2020, 40(1): 221-233. |
[6] | Wei Fengying, Lin Qingteng. Extinction and Distribution for an SIQS Epidemic Model with Quarantined-Adjusted Incidence [J]. Acta mathematica scientia,Series A, 2017, 37(6): 1148-1161. |
[7] | Zhou Sen, Yang Zuodong. Extinction and Non-Extinction Behavior of Solutions for a Class of Reaction-Diffusion Equations with a Nonlinear Source [J]. Acta mathematica scientia,Series A, 2016, 36(3): 531-542. |
[8] | Zhang Shuwen. Dynamics of a Predator-Prey System with Impulsive Perturbations and Markovian Switching [J]. Acta mathematica scientia,Series A, 2016, 36(3): 569-583. |
[9] | Zhang Shuwen. A Stochastic Predator-Prey System with Time Delays and Prey Dispersal [J]. Acta mathematica scientia,Series A, 2015, 35(3): 592-603. |
[10] | ZHONG Min-Ling, LIU Xiu-Xiang. Dynamical Analysis of a Predator-prey System with Hassell-Varley-Holling Functional Response [J]. Acta mathematica scientia,Series A, 2011, 31(5): 1295-1310. |
[11] | ZHANG Jing, REN Yan-Xia. Properties of Superdiffusions with Singular Branching Mechanism [J]. Acta mathematica scientia,Series A, 2010, 30(6): 1474-1484. |
[12] | Gui Zhanji; Jia Jing; Ge Weigao. Global Stability of Single-species Diffusion Models with Time Delay [J]. Acta mathematica scientia,Series A, 2007, 27(3): 496-505. |
[13] |
Liang Zhiqing;Chen Lansun.
Stability of Periodic Solution for a Discrete Leslie Predator-prey System [J]. Acta mathematica scientia,Series A, 2006, 26(4): 634-640. |
[14] | Wei Gengping; Shen Jianhua. The Persistence of Nonoscillatory Solutions of Difference Equations Under Impulsive Perturbations [J]. Acta mathematica scientia,Series A, 2006, 26(4): 595-600. |
[15] | Wang Yuquan ;Jing Zhujun. Global Qualitative Analysis of a Food Chain Model [J]. Acta mathematica scientia,Series A, 2006, 26(3): 410-420. |
|