Acta mathematica scientia,Series A ›› 2022, Vol. 42 ›› Issue (3): 11411159.doi: 10.1007/s1047302203191
• Articles • Previous Articles Next Articles
Mingzhan HUANG^{1}, Shouzong LIU^{1}, Xinyu SONG^{1}, Xiufen ZOU^{2}
Received:
20201218
Revised:
20210411
Online:
20220626
Published:
20220624
Contact:
Xinyu SONG,Email:xysong88@163.com
Email:xysong88@163.com
Supported by:
CLC Number:
Mingzhan HUANG, Shouzong LIU, Xinyu SONG, Xiufen ZOU. CONTROL STRATEGIES FOR A TUMORIMMUNE SYSTEM WITH IMPULSIVE DRUG DELIVERY UNDER A RANDOM ENVIRONMENT[J].Acta mathematica scientia,Series A, 2022, 42(3): 11411159.
[1]  Ahmedin J, Freddie B, Melissa M C, et al. Global cancer statistics. CA:A Cancer Journal for Clinicians, 2011, 61(2):6990 
[2]  Freddie B, Jacques F, Isabelle S, et al. Global cancer statistics 2018:globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA:A Cancer Journal for Clinicians, 2018, 68(6):394424 
[3]  World Health Organization. World health statistics 2016:mMonitoring hHealth for the SDGs sustainable development goals. Geneva, Switzerland:World Health Organization, 2016 
[4]  Lindsey A T, Freddie B, Rebecca L S, et al. Global cancer statistics, 2012. CA:A Cancer Journal for Clinicians, 2015, 65(2):87108 
[5]  Marek B, Monika J P. Stability analysis of the family of tumour angiogenesis models with distributed time delays. Commun Nonlinear Sci Numer Simul, 2016, 31(1/8):124142 
[6]  Liu X D, Li Q Z, Pan J X. A deterministic and stochastic model for the system dynamics of tumorimmune responses to chemotherapy. Physica A:Statistical Mechanics and its Applications, 2018, 500:162176 
[7]  Bellomo N, Preziosi L. Modelling and mathematical problems related to tumor evolution and its interaction with the immune system. Math Comput Modell, 2000, 32(3/8):413452 
[8]  Pillis L G D, Radunskaya A E, Wiseman C L. A validated mathematical model of cellmediated immune response to tumor growth. Cancer Res, 2005, 65:235252 
[9]  Radouane Y. Hopf bifurcation in differential equations with delay for tumorimmune system competition model. SIAM J Appl Math, 2007, 67(6):16931703 
[10]  Saleem M, Tanuja A. Chaos in a tumor growth model with delayed responses of the immune system. J Appl Math, 2012, 2012:116 
[11]  Wang S L, Wang S L, Song X Y. Hopf bifurcation analysis in a delayed oncolytic virus dynamics with continuous control. Nonlinear Dynam, 2012, 67(1):629640 
[12]  Dong Y P, Rinko M, Yasuhiro T. Mathematical modeling on helper t cells in a tumor immune system. Discrete Contin Dyn Syst Ser B, 2014, 19(1):5572 
[13]  Fuat G, Senol K, Ilhan O, Fatma B. Stability and bifurcation analysis of a mathematical model for tumor cimmune interaction with piecewise constant arguments of delay. Chaos Solitons Fractals, 2014, 68:169179 
[14]  Subhas K, Sandip B. Stability and bifurcation analysis of delay induced tumor immune interaction model. Appl Math Comput, 2014, 248:652671 
[15]  Rihan F A, Rahman D H A, Lakshmanan S, Alkhajeh A S. A time delay model of tumourimmune system interactions:global dynamics, parameter estimation, sensitivity analysis. Appl Math Comput, 2014, 232(1):606623 
[16]  Subhas K. Bifurcation analysis of a delayed mathematical model for tumor growth. Chaos Solitons Fractals, 2015, 77:264276 
[17]  Dong Y P, Huang G, Rinko M, Yasuhiro T. Dynamics in a tumor immune system with time delays. Appl Math Comput, 2015, 252:99113 
[18]  Pang L Y, Shen L, Zhao Z. Mathematical modelling and analysis of the tumor treatment regimens with pulsed immunotherapy and chemotherapy. Comput Math Methods Med, 2016 (2016) 
[19]  López A G, Seoane J M, Sanjuán M A F. Bifurcation analysis and nonlinear decay of a tumor in the presence of an immune response. Int J Bifurcat Chaos, 2017, 27(14):1750223 
[20]  Ansarizadeh F, Singh M, Richards D. Modelling of tumor cells regression in response to chemotherapeutic treatment. Applied Mathematical Modelling, 2017, 48:96112 
[21]  López A G, Iarosz K C, Batista A M, et al. Nonlinear cancer chemotherapy:modelling the NortonSimon hypothesis. Commun Nonlinear Sci Numer Simulat, 2019, 70:307317 
[22]  Lisette G D P, Radunskaya A. The dynamics of an optimally controlled tumor model:a case study. Math Comput Modelling, 2003, 37(11):12211244 
[23]  Lisette G D P, Gu W, Fister K R, et al. Chemotherapy for tumors:an analysis of the dynamics and a study of quadratic and linear optimal controls. Math Biosci, 2007, 209(1):292315 
[24]  Alberto D O, Urszula L, Helmut M, Heinz S. On optimal delivery of combination therapy for tumors. Math Biosci, 2009, 222(1):1326 
[25]  Mehmet I, Metin U S, Stephen P B. Optimal control of drug therapy in cancer treatment. Nonlinear Analysis:Theory. Methods & Applications, 2009, 71(12):e1473e1486 
[26]  Rihan F A, Abdelrahman D H, AlMaskari F, et al. Delay differential model for tumourimmune response with chemoimmunotherapy and optimal control. Comput Math Methods Med, 2014 (2014):115 
[27]  Pang L Y, Zhao Z, Song X Y. Costeffectiveness analysis of optimal strategy for tumor treatment. Chaos Solitons Fractals, 2016, 87:293301 
[28]  Sarkar R R, Sandip B. Cancer self remission and tumor stabilitya stochastic approach. Math Biosci, 2005, 196(1):6581 
[29]  Albano G, Giorno V. A stochastic model in tumor growth. J Theoret Biol, 2006, 242(2):329336 
[30]  Thomas B, Steffen T. Stochastic model for tumor growth with immunization. Phys Rev E, 2009, 79(5):051903 
[31]  Xu Y, Feng J, Li J J, Zhang H Q. Stochastic bifurcation for a tumorimmune system with symmetric lvy noise. Physica A:Statal Mechanics and its Applications, 2013, 392(20):47394748 
[32]  Kim K S, Kim S, Jung I H. Dynamics of tumor virotherapy:a deterministic and stochastic model approach. Stoch Anal Appl, 2016, 34(3):483495 
[33]  Deng Y, Liu M. Analysis of a stochastic tumorimmune model with regime switching and impulsive perturbations. Applied Mathematical Modelling, 2020, 78:482504 
[34]  Bashkirtseva I, Ryashko L, Dawson K A, et al. Analysis of noiseinduced phenomena in the nonlinear tumormmune system. Physica A:Statal Mechanics and its Applications, 2019, 549:123923 
[35]  Samanta G P, Ricardo G A, Sharma S. Analysis of a mathematical model of periodically pulsed chemotherapy treatment. International Journal of Dynamics and Control, 2015, 5(3):842857 
[36]  Samanta G P, Sen P, Maiti A. A delayed epidemic model of diseases through droplet infection and direct contact with saturation incidence and pulse vaccination. Systems Science and Control Engineering, 2016, 4(1):320333 
[37]  Samanta G P, Ricardo G A. Analysis of a delayed epidemic model of diseases through droplet infection and direct contact with pulse vaccination. International Journal of Dynamics and Control, 2015, 3(3):275287 
[38]  Samanta G P. Mathematical Analysis of a Chlamydia Epidemic Model with Pulse Vaccination Strategy. Acta Biotheoretica, 2015, 63(1):121 
[39]  Samanta G P, Sharma S. Analysis of a delayed Chlamydia epidemic model with pulse vaccination. Applied Mathematics and Computation, 2014, 230:555569 
[40]  Samanta G P. Analysis of a delayed epidemic model with pulse vaccination. Chaos, Solitons and Fractals, 2014, 66:7485 
[41]  Samanta G P, Bera S P. Analysis of a Chlamydia epidemic model with pulse vaccination strategy in a random environment. Nonlinear Analysis:Modelling and Control, 2018, 23(4):457474 
[42]  Jing Y, Mei L Q, Song X Y, Tian W J, Ding X M. Analysis of an impulsive epidemic model with time delays and nonlinear incidence rate. Acta Mathematica Scientia, 2012, 32A(4):670684 
[43]  Ling L, Liu S Y, Jiang G R. Bifurcation analysis of a SIRS epidemic model with saturating contact rate and vertical transmission. Acta Mathematica Scientia, 2014, 34A(6):14151425 
[44]  Ma Z E, Cui G R, Wang W D. Persistence and extinction of a population in a polluted environment. Math Biosci, 1990, 101:7597 
[45]  Ma Z E, Hallam T G. Effects of parameter fluctuations on community survival. Math Biosci, 1987, 86(1):3549 
[46]  Liu M, Wang K. Persistence and extinction in stochastic nonautonomous logistic systems. J Math Anal Appl, 2011, 375(2):44357 
[47]  Li D X, Cheng F J. Threshold for extinction and survival in stochastic tumor immune system. Communications in Nonlinear ence & Numerical Simulations, 2017, 51(OCT):112 
[48]  Lan G J, Ye C, Zhang S W, Wei C J. Dynamics of a stochastic glucoseinsulin model with impulsive injection of insulin. Commun Math Biol Neurosci, 2020, 2020:6 
[49]  Kloeden P E, Platen E. Numerical solution of stochastic differential equations. New York:SpringerVerlag, 1992 
[50]  Shochat E, Hart D, Agur Z. Using computer simulations for evaluating the efficacy of breast cancer chemotherapy protocols. Mathematical Models and Methods in Applied Sciences, 1999, 9(4):599615 
[1]  Liya Liu,Daqing Jiang. Global Dynamics of a Stochastic Chemostat Model with General Response Function and Wall Growth [J]. Acta mathematica scientia,Series A, 2021, 41(6): 19121924. 
[2]  Dandan Sun,Yingke Li,Zhidong Teng,Tailei Zhang. Analysis of the Stability for Measles Epidemic Model with AgeStructured [J]. Acta mathematica scientia,Series A, 2021, 41(6): 19501968. 
[3]  Xin Xie,Jianquan Li,Yuping Wang,Dian Zhang. A Qualitative Analysis of a TumorImmune System with Antigenicity [J]. Acta mathematica scientia,Series A, 2021, 41(6): 19691979. 
[4]  Shuangming Wang,Xingman Fan,Mingjun Zhang,Junrong Liang. The Dynamics of an SEIR Epidemic Model with TimePeriodic Latent Period [J]. Acta mathematica scientia,Series A, 2020, 40(2): 527539. 
[5]  Zhongwei Cao,Xiangdan Wen,Wei Feng,Li Zu. Dynamics of a Nonautonomous SIRI Epidemic Model with Random Perturbations [J]. Acta mathematica scientia,Series A, 2020, 40(1): 221233. 
[6]  Wei Fengying, Lin Qingteng. Extinction and Distribution for an SIQS Epidemic Model with QuarantinedAdjusted Incidence [J]. Acta mathematica scientia,Series A, 2017, 37(6): 11481161. 
[7]  Zhou Sen, Yang Zuodong. Extinction and NonExtinction Behavior of Solutions for a Class of ReactionDiffusion Equations with a Nonlinear Source [J]. Acta mathematica scientia,Series A, 2016, 36(3): 531542. 
[8]  Zhang Shuwen. Dynamics of a PredatorPrey System with Impulsive Perturbations and Markovian Switching [J]. Acta mathematica scientia,Series A, 2016, 36(3): 569583. 
[9]  Zhang Shuwen. A Stochastic PredatorPrey System with Time Delays and Prey Dispersal [J]. Acta mathematica scientia,Series A, 2015, 35(3): 592603. 
[10]  ZHONG MinLing, LIU XiuXiang. Dynamical Analysis of a Predatorprey System with HassellVarleyHolling Functional Response [J]. Acta mathematica scientia,Series A, 2011, 31(5): 12951310. 
[11]  ZHANG Jing, REN YanXia. Properties of Superdiffusions with Singular Branching Mechanism [J]. Acta mathematica scientia,Series A, 2010, 30(6): 14741484. 
[12]  Gui Zhanji; Jia Jing; Ge Weigao. Global Stability of Singlespecies Diffusion Models with Time Delay [J]. Acta mathematica scientia,Series A, 2007, 27(3): 496505. 
[13] 
Liang Zhiqing;Chen Lansun.
Stability of Periodic Solution for a Discrete Leslie Predatorprey System [J]. Acta mathematica scientia,Series A, 2006, 26(4): 634640. 
[14]  Wei Gengping; Shen Jianhua. The Persistence of Nonoscillatory Solutions of Difference Equations Under Impulsive Perturbations [J]. Acta mathematica scientia,Series A, 2006, 26(4): 595600. 
[15]  Wang Yuquan ;Jing Zhujun. Global Qualitative Analysis of a Food Chain Model [J]. Acta mathematica scientia,Series A, 2006, 26(3): 410420. 
