[1] |
Corlette K. Flat G-bundles with canonical metrics. J Differential Geom, 1988, 28(3):361-382
|
[2] |
Donaldson S K. Floer homology groups in Yang-Mills theory. Vol 147. Cambridge:Cambridge University Press, 2002
|
[3] |
Donaldson S K, Kronheimer P B. The geometry of four-manifolds. New York:Oxford University Press, 1990
|
[4] |
Gagliardo M, Uhlenbeck K K. Geometric aspects of the Kapustin-Witten equations. J Fixed Point Theory Appl, 2012, 11:185-198
|
[5] |
Haydys H. Fukaya-Seidel category and gauge theory. J Symplectic Geom, 2015, 13:151-207
|
[6] |
Hitchin N J. The self-duality equations on a Riemann surface. Proc London Math Soc, 1987, 55(3):59-126
|
[7] |
Huang T. A lower bound on the solutions of Kapustin-Witten equations. Lett Math Phys, 2016. DOI:https://doi.org/10.1007/s11005-016-0910-2
|
[8] |
Huang T. An energy gap for complex Yang-Mills equations. SIGMA Symmetry Integrability Geom Methods Appl, 2017, 13:Paper No 061, 15 pp
|
[9] |
Huang T. On a topology property for moduli space of Kapustin-Witten equations. Forum Math, 2019, 31(5):1119-1138
|
[10] |
Kobayashi S. Differential geometry of complex vector bundles. Publications of the Mathematical Society of Japan. Vol 15. Princeton, NJ:Princeton University Press, 1987
|
[11] |
Mares B. Some Analytic Aspects of Vafa-Witten Twisted N=4 Supersymmetric Yang-Mills theory[D]. MIT, 2010
|
[12] |
Tanaka Y. Some boundedness property of solutions to the Vafa-Witten equations on closed four-manifolds. Quart J Math, 2017, 68(4):1203-1225
|
[13] |
Taubes C H. Compactness theorems for SL(2; C) generalizations of the 4-dimensional anti-self dual equations. arXiv:1307.6447v4
|
[14] |
Taubes C H. The zero loci of Z/2 harmonic spinors in dimension 2, 3 and 4. arXiv:1407.6206
|
[15] |
Taubes C H. PSL(2; C) connections on 3-manifolds with L2 bounds on curvature. Camb J Math, 2014, 1:239-397
|
[16] |
Taubes C H. The behavior of sequences of solutions to the Vafa-Witten equations. arXiv:1702.04610
|
[17] |
Uhlenbeck K K. Connctions with Lp bounds on curvature. Comm Math Phys, 1982, 83:31-42
|
[18] |
Uhlenbeck K K. The Chern classes of Sobolev connections. Comm Math Phys, 1985, 101:445-457
|
[19] |
Vafa C, Witten E. A Strong Coupling Test of S-Dualy. Nucl Phys B, 1994, 431:3-77
|
[20] |
Wehrheim K. Uhlenbeck Compactness. Vol 1. European Mathematical Society, 2004
|
[21] |
Witten E. Fivebranes and Knots. Quantum Topol, 2012, 3:1-137
|