Acta mathematica scientia,Series A ›› 2022, Vol. 42 ›› Issue (3): 730-748.
Previous Articles Next Articles
Received:
2021-04-14
Online:
2022-06-26
Published:
2022-05-09
Contact:
Kaimin Teng
E-mail:862240639@qq.com;tengkaimin2013@163.com
Supported by:
CLC Number:
Yanan Wang,Kaimin Teng. Ground State Solutions for Quasilinear Schrödinger Equation of Choquard Type[J].Acta mathematica scientia,Series A, 2022, 42(3): 730-748.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 |
Alves C O , Wang Y J , Shen Y T . Soliton solutions for a class of quasilinear Schrödinger equations with a parameter. J Differ Equ, 2015, 259, 318- 343
doi: 10.1016/j.jde.2015.02.030 |
2 |
Chen J H , Cheng B T , Huang X J . Ground state solutions for a class of quasilinear Schrödinger equations with Choquard type nonlinearity. Appl Math Lett, 2020, 102, 106141
doi: 10.1016/j.aml.2019.106141 |
3 |
Chen J H , Huang X J , Cheng B T , Zhu C X . Some results on standing wave solutions for a class of quasilinear Schrödinger equations. J Math Phys, 2019, 60, 091506
doi: 10.1063/1.5093720 |
4 |
Chen J H , Huang X J , Cheng B T . Positive solutions for a class of quasilinear Schrödinger equations with superlinear condition. Appl Math Lett, 2019, 87, 165- 171
doi: 10.1016/j.aml.2018.07.035 |
5 |
Chen J H , Wu Q F , Huang X J , Zhu C X . Positive solutions for a class of quasilinear Schrödinger equations with two parameters. Bull Malays Math Sci Soc, 2020, 43, 2321- 2341
doi: 10.1007/s40840-019-00803-y |
6 |
Chen S X , Wu X . Existence of positive solutions for a class of quasilinear Schrödinger equations of Choquard type. J Math Anal Appl, 2019, 475, 1754- 1777
doi: 10.1016/j.jmaa.2019.03.051 |
7 |
Colin M , Jeanjean L . Solutions for a quasilinear Schrödinge equation: a dual approach. Nonlinear Anal, 2004, 56, 213- 226
doi: 10.1016/j.na.2003.09.008 |
8 | Jeanjean L . On the existence of bounded Palais-Smale sequence and application to a Landesman-Lazer type problem set on $ {{\Bbb R}}^3 $. Proc Roy Soc Edinburgh Sect, 1999, 129A, 787- 809 |
9 |
Kurihara S . Large-amplitude quasi-solitons in superfluid films. J Phys Soc Japan, 1981, 50, 3262- 3267
doi: 10.1143/JPSJ.50.3262 |
10 |
Li G D , Tang C L . Existence of a ground state solution for Choquard equation with the upper critical exponent. Comput Math Appl, 2018, 76, 2635- 2647
doi: 10.1016/j.camwa.2018.08.052 |
11 | Liu X Q , Liu J Q , Wang Z Q . Quasilinear elliptic equations via perturbation method. Proc Amer Math Soc, 2013, 141, 253- 263 |
12 |
Liu X Q , Liu J Q , Wang Z Q . Quasilinear elliptic equations with critical growth via perturbation method. J Differ Equ, 2013, 254, 102- 124
doi: 10.1016/j.jde.2012.09.006 |
13 |
Liu X Q , Liu J Q , Wang Z Q . Ground states for quasilinear Schrödinger equations with critical growth. Calc Var Partial Differential Equations, 2013, 46, 641- 669
doi: 10.1007/s00526-012-0497-0 |
14 |
Luo H X . Ground state solutions of Pohožaev type and Nehari type for a class of nonlinear Choquard equations. J Math Anal Appl, 2018, 467, 842- 862
doi: 10.1016/j.jmaa.2018.07.055 |
15 |
Laedke E W , Spatschek K H , Stenflo L . Evolution theorem for a class of perturbed envelope soliton solutions. J Math Phys, 1983, 24, 2764- 2769
doi: 10.1063/1.525675 |
16 | Liu J Q , Wang Z Q . Soliton solutions for quasilinear Schrödinger equations. Ⅰ. Proc Amer Math Soc, 2003, 131, 441- 448 |
17 |
Liu J Q , Wang Y Q , Wang Z Q . Soliton solutions for quasilinear Schrödinger equations. Ⅱ. J Differ Equ, 2003, 187, 473- 493
doi: 10.1016/S0022-0396(02)00064-5 |
18 |
Liu J Q , Wang Y Q , Wang Z Q . Solutions for quasilinear Schrödinger equations via the Nehari method. Comm Partial Differential Equations, 2004, 29, 879- 901
doi: 10.1081/PDE-120037335 |
19 |
Makhankov V G , Fedanin V K . Nonlinear effects in quasi-one-dimensional models of condensed matter theory. Phys Rep, 1984, 104, 1- 86
doi: 10.1016/0370-1573(84)90106-6 |
20 |
Moroz V , Van Schaftingen J . Groundstates of nonlinear Choquard equations: Existence, qualitative prop erties and decay asymptotics. J Func Anal, 2013, 265, 153- 184
doi: 10.1016/j.jfa.2013.04.007 |
21 |
Poppenberg M , Schmitt K , Wang Z Q . On the existence of soliton solutions to quasilinear Schrödinger equations. Calc Var, 2002, 14, 329- 344
doi: 10.1007/s005260100105 |
22 |
Ritchie B . Relativistic self-focusing and channel formation in laser-plasma interactions. Phys Rev E, 1994, 50, 687- 689
doi: 10.1103/PhysRevE.50.R687 |
23 |
Silva E A B , Vieira G F . Quasilinear asymptotically periodic Schrödinger equations with critical growth. Calc Var, 2010, 39, 1- 33
doi: 10.1007/s00526-009-0299-1 |
24 |
Struwe M . A global compactness result for elliptic boundary value problems involving limiting nonlineari ties. Math Z, 1984, 187 (4): 511- 517
doi: 10.1007/BF01174186 |
25 |
Severo U B , Gloss E , Silva E D . On a class of quasilinear Schrödinger equations with superlinear or asymptotically linear terms. J Differ Equ, 2017, 263, 3550- 3580
doi: 10.1016/j.jde.2017.04.040 |
26 | Wang Y J , Li Z X . Existence of solutions to quasilinear Schrödinger equations involving critical Sobolev exponent. Taiwan J Math, 2018, 22, 401- 420 |
27 |
Xu L X , Chen H B . Ground state solutions for quasilinear Schrödinger equations via Pohožaev manifold in Orlicz space. J Differ Equ, 2018, 265, 4417- 4441
doi: 10.1016/j.jde.2018.06.009 |
28 | Xue Y F , Tang C L . Existence of a bound state solutions for quasilinear Schrödinger equations. Adv Nonlinear Anal, 2019, 8, 323- 338 |
29 |
Yang M B , Santos C A , Zhou J Z . Least action nodal solutions for a quasilinear defocusing Schrödinger equation with supercritical nonlinearity. Commun Contemp Math, 2019, 21, 1850026
doi: 10.1142/S0219199718500268 |
30 |
Yang X , Zhang W , Zhao F . Existence and multiplicity of solutions for a quasilinear Choquard equation via perturbation method. J Math Phys, 2018, 59, 081503
doi: 10.1063/1.5038762 |
[1] | ZHANG Jian, TANG Xian-Hua, ZHANG Wen. ON GROUND STATE SOLUTIONS FOR SUPERLINEAR DIRAC EQUATION [J]. Acta mathematica scientia,Series A, 2014, 34(3): 840-850. |
|