Acta mathematica scientia,Series A ›› 2022, Vol. 42 ›› Issue (3): 749-759.
Previous Articles Next Articles
Xudong Shang1,*(),Jihui Zhang2()
Received:
2021-07-06
Online:
2022-06-26
Published:
2022-05-09
Contact:
Xudong Shang
E-mail:xudong-shang@163.com;Zhangjihui@njnu.edu.cn
Supported by:
CLC Number:
Xudong Shang,Jihui Zhang. Existence of Positive Ground State Solutions for the Choquard Equation[J].Acta mathematica scientia,Series A, 2022, 42(3): 749-759.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 |
Alves C O , Yang M B . Existence of semiclassical ground state solutions for a generalized Choquard equation. J Differential Equations, 2014, 257, 4133- 4164
doi: 10.1016/j.jde.2014.08.004 |
2 | Alves C O , Figueiredo G M , Yang M B . Existence of solutions for a nonlinear Choquard equation with potential vanishing at infinity. Adv Nonlinear Anal, 2016, 5, 331- 345 |
3 |
Alves C O , Gao F S , Squassina M , Yang M B . Singularly perturbed critical Choquard equations. J Differential Equations, 2017, 263, 3943- 3988
doi: 10.1016/j.jde.2017.05.009 |
4 |
Cingolani S , Tanaka K . Semi-classical states for the nonlinear Choquard equations: existence, multiplicity and concentration at a potential well. Rev Mat Iberoam, 2019, 35, 1885- 1924
doi: 10.4171/rmi/1105 |
5 |
Diósi L . Gravitation and quantum-mechanical localization of macro-objects. Phys Lett A, 1984, 105, 199- 202
doi: 10.1016/0375-9601(84)90397-9 |
6 |
Guo L , Hu T X . Multi-bump solutions for nonlinear Choquard equation with potentials wells and a general nonlinearity. Acta Math Sci, 2020, 40, 316- 340
doi: 10.1007/s10473-020-0202-x |
7 |
Ghimenti M , Van Schaftingen J . Nodal solutions for the Choquard equation. J Funct Anal, 2016, 271, 107- 135
doi: 10.1016/j.jfa.2016.04.019 |
8 |
Jeanjean L . On the existence of bounded Palais-Smale sequence and application to a Landesman-Lazer type problem set on $\mathbb{R} ^{N}$. Proc Roy Soc Edinburgh Sect A, 1999, 129, 787- 809
doi: 10.1017/S0308210500013147 |
9 |
Jones K R W . Newtonian quantum gravity. Aust J Phys, 1995, 48, 1055- 1082
doi: 10.1071/PH951055 |
10 |
Jeanjean L , Tanaka K . A positive solution for a nonlinear Schrödinger equation on $\mathbb{R} .{N}$. Indiana Univ Math J, 2005, 54, 443- 464
doi: 10.1512/iumj.2005.54.2502 |
11 |
Li G B , Ye H . Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in $\mathbb{R} .{3}$. J Differential Equations, 2014, 257, 566- 600
doi: 10.1016/j.jde.2014.04.011 |
12 |
Liu X N , Ma S W , Zhang Z . Infinitely many bound state solutions of Choquard equations with potentials. Z Angew Math Phys, 2018, 69, 118
doi: 10.1007/s00033-018-1015-9 |
13 |
Lieb E H . Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation. Stud Appl Math, 1977, 57, 93- 105
doi: 10.1002/sapm197757293 |
14 | Lieb E H , Loss M . Analysis. Providence, RI: American Mathematical Society, 1997 |
15 |
Lions P L . The concentration-compactness method in the calculus of variations. The locally compact case, parts 1 and 2. Ann Inst H Poincaré Anual Non Linéair, 1984, 1, 109- 145
doi: 10.1016/s0294-1449(16)30428-0 |
16 |
Lions P L . The Choquard equation and related questions. Nonlinear Anal, 1980, 4, 1063- 1072
doi: 10.1016/0362-546X(80)90016-4 |
17 |
Luo H X . Ground state solutions of Pohozaev type and Nehari type foraclass of nonlinear Choquard equations. J Math Anal Appl, 2018, 467, 842- 862
doi: 10.1016/j.jmaa.2018.07.055 |
18 |
Moroz I M , Penrose R , Tod P . Spherically-symmetric solutions of the Schrödinger-Newton equations. Class Quantum Gravity, 1998, 15, 2733- 2742
doi: 10.1088/0264-9381/15/9/019 |
19 |
Moroz V , Van Schaftingen J . Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics. J Funct Anal, 2013, 265, 153- 184
doi: 10.1016/j.jfa.2013.04.007 |
20 | Moroz V , Van Schaftingen J . Existence of Groundstates for a class of nonlinear Choquard equations. Trans Amer Math Soc, 2015, 367, 6557- 6579 |
21 |
Ma L , Zhao L . Classification of positive solitary solutions of the nonlinear Choquard equation. Arch Ration Mech Anal, 2010, 195, 455- 467
doi: 10.1007/s00205-008-0208-3 |
22 | Pekar S . Untersuchung über die Elektronentheorie der Kristalle. Berlin: Akademie Verlag, 1954 |
23 |
Penrose R . On gravity's role in quantum state reduction. Gen Relativ Gravitat, 1996, 28, 581- 600
doi: 10.1007/BF02105068 |
24 |
Riesz M . L'intégrale de Riemann Liouville et le probléme de Cauchy. Acta Math, 1949, 81, 1- 223
doi: 10.1007/BF02395016 |
25 | Wang J , Qu M M , Xiao L . Existence of positive solutions to the nonlinear Choquard equation with competing potentials. Electron J Differ Equ, 2018, 63, 1- 21 |
26 | Xia J K, Wang Z Q. Saddle solutions for the Choquard equation. Calc Var, 2019, 58, Artile: 85 |
27 |
Zhang H , Xu J X , Zhang F B . Existence and multiplicity of solutions for a generalized Choquard equation. Comput Math Appl, 2017, 73, 1803- 1814
doi: 10.1016/j.camwa.2017.02.026 |
28 |
Zhao L G , Zhao F K . On the existence of solutions for the Schrödinger-Poisson equations. J Math Anal Appl, 2008, 346, 155- 169
doi: 10.1016/j.jmaa.2008.04.053 |
[1] | Chen Xiong,Qi Gao. Locally Minimizing Solutions of a Two-component Ginzburg-Landau System [J]. Acta mathematica scientia,Series A, 2023, 43(2): 321-340. |
[2] |
Bin Ge,Wenshuo Yuan.
Existence and Multiplicity of Radial Solutions for Double Phase Problem on the Entire Space |
[3] | Anran Li,Dandan Fan,Chongqing Wei. Existence and Asymptotic Behaviour of Solutions for Kirchhoff Type Equations with Zero Mass and Critical [J]. Acta mathematica scientia,Series A, 2022, 42(6): 1729-1743. |
[4] | Lin Chen,Fanqin Liu. Multiplicity of Solutions to Fractional Critical Choquard Equation [J]. Acta mathematica scientia,Series A, 2022, 42(6): 1682-1704. |
[5] |
Penghui Zhang,Zhiqing Han.
Existence of Nontrivial Solutions for Non-autonomous Kirchhoff-type Equations with Critical Growth in |
[6] | Yu Duan,Xin Sun. Existence of Positive Solutions for Klein-Gordon-Maxwell Systems with an Asymptotically Linear Nonlinearity [J]. Acta mathematica scientia,Series A, 2022, 42(4): 1103-1111. |
[7] | Yanan Wang,Kaimin Teng. Ground State Solutions for Quasilinear Schrödinger Equation of Choquard Type [J]. Acta mathematica scientia,Series A, 2022, 42(3): 730-748. |
[8] | Lei Ji,Jiafeng Liao. Existence of Positive Ground State Solutions for a Class of Kirchhoff Type Problems with Critical Exponent [J]. Acta mathematica scientia,Series A, 2022, 42(2): 418-426. |
[9] | Weiqiang Zhang,Peihao Zhao. Existence, Multiplicity and Concentration of Positive Solutions for a Fractional Choquard Equation [J]. Acta mathematica scientia,Series A, 2022, 42(2): 470-490. |
[10] | Changmu Chu,Lu Meng. Existence of Positive Solutions for Semilinear Elliptic Equation with Variable Exponent [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1779-1790. |
[11] | Xianyong Yang,Xianhua Tang,Guangze Gu. Existence and Multiplicity of Solutions for a Fractional Choquard Equation with Critical or Supercritical Growth [J]. Acta mathematica scientia,Series A, 2021, 41(3): 702-722. |
[12] | Yanfang Mei,Youjun Wang. Three Types of Solutions for a Class of Nonlinear Schrödinger Equations [J]. Acta mathematica scientia,Series A, 2019, 39(5): 1087-1093. |
[13] | Liwan Fang,Wennian Huang,Minqing Wang. Ground-State Solutions for Schrödinger-Maxwell Equations in the Critical Growth [J]. Acta mathematica scientia,Series A, 2019, 39(3): 475-483. |
[14] | Jing Zhang. The Asymptotic Behaviors and Phase Separation for a Class of Subcritical Bose-Einstein Condensation System [J]. Acta mathematica scientia,Series A, 2019, 39(3): 441-450. |
[15] | Zhang Shengui. Infinitely Many Solutions for a Bi-Nonlocal Problem Involving p(x)-Laplacian-Like Operator [J]. Acta mathematica scientia,Series A, 2018, 38(3): 514-526. |
|