Acta mathematica scientia,Series A ›› 2022, Vol. 42 ›› Issue (3): 716-729.
Previous Articles Next Articles
Received:
2021-06-03
Online:
2022-06-26
Published:
2022-05-09
Contact:
Liejun Shen
E-mail:yingyang_2019@sina.com;liejunshen@163.com
Supported by:
CLC Number:
Ying Yang,Liejun Shen. Research on the Lowest Energy Solution ofChern-Simons-Schrödinger Equation with Trapping Potential[J].Acta mathematica scientia,Series A, 2022, 42(3): 716-729.
1 |
Byeon J , Huh H , Seok J . Standing waves of nonlinear Schrödinger equations with the gauge field. Journal of Functional Analysis, 2012, 263 (6): 1575- 1608
doi: 10.1016/j.jfa.2012.05.024 |
2 |
Byeon J , Huh H , Seok J . On standing waves with a vortex point of order N for the nonlinear Chern Simons-Schrödinger equations. Journal of Differential Equations, 2016, 261 (2): 1285- 1316
doi: 10.1016/j.jde.2016.04.004 |
3 | Dunne G . Self-Dual Chern-Simons Theories. Berlin: Springer Science & Business Media, 2009 |
4 |
Gou T X , Zhang Z T . Normalized solutions to the Chern-Simons-Schrödinger system. Journal of Functional Analysis, 2021, 280 (5): 108894
doi: 10.1016/j.jfa.2020.108894 |
5 |
Guo H L , Zhang Y M , Zhou H S . Blow-up solutions for a Kirchhoff type elliptic equation with trapping potential. Communications on Pure Applied Analysis, 2018, 17 (5): 1875- 1897
doi: 10.3934/cpaa.2018089 |
6 |
Huh H , Seok J . Equivalence and nonexistence of standing waves for coupled Schrödinger equations with Chern-Simons gauge fields. Topological Methods in Nonlinear Analysis, 2015, 46 (1): 495- 504
doi: 10.12775/TMNA.2015.056 |
7 | Jiang Y S , Pomponio A , Ruiz D . Standing waves for a gauged nonlinear Schrödinger equation with a vortex point. Communications in Contemporary Mathematics, 2016, 46 (4): 1550074 |
8 | Li G B , Luo X . Normalized solutions for the Chern-Simons-Schrödinger equation in R2. Annales Academiae Scientiarum Fennicae. Mathematica, 2017, 42 (1): 405- 428 |
9 | Lions P L . The concentration-compactness principle in the calculus of variations. The locally compact case, part 2. Annales de l'Institut Henri Poincaré C, 1984, 42 (4): 223- 283 |
10 | Pomponio A , Ruiz D . Boundary concentration of a gauged nonlinear Schrödinger equation on large balls. Calculus of Variations and Partial Differential Equations, 2015, 53 (1): 289- 316 |
11 | Reed M , Simon B . Methods of Modern Mathematical Physics Ⅳ:Analysis of Operators. New York: Academic press, 1972 |
12 | Struwe M , Jost J . Variational methods, applications to nonlinear partial differential equations and hamiltonian systems. Jahresbericht der Deutschen Mathematiker Vereinigung, 1994, 96 (1): 24- 25 |
13 | Wan Y Y, Tan J G. Concentration of semi-classical solutions to the Chern-Simons-Schrödinger systems. Nonlinear Differential Equations and Applications NoDEA, 2017, 24 (3), Article number:28 |
14 | Wan Y Y , Tan J G . The existence of nontrivial solutions to Chern-Simons-Schrödinger systems. Discrete & Continuous Dynamical Systems, 2017, 37 (5): 2765- 2786 |
15 |
Wan Y Y , Tan J G . Standing waves for the Chern-Simons-Schrödinger systems without (AR) condition. Journal of Mathematical Analysis and Applications, 2014, 415 (1): 422- 434
doi: 10.1016/j.jmaa.2014.01.084 |
16 | Weinstein M I . Nonlinear Schrödinger equations and sharp interpolation estimates. Communications in Mathematical Physics, 1982, 87 (4): 567- 576 |
17 | Willem M . Minimax Theorems. Berlin: Springer Science & Business Media, 1997 |
18 | Yuan J J . Multiple normalized solutions of Chern-Simons-Schrödinger system. Nonlinear Differential Equations and Applications NoDEA, 2015, 6 (22): 1801- 1816 |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 140
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 136
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|