Acta mathematica scientia,Series A ›› 2021, Vol. 41 ›› Issue (5): 1396-1404.
Previous Articles Next Articles
Received:
2020-08-30
Online:
2021-10-26
Published:
2021-10-08
Supported by:
CLC Number:
Daoguo Zhou. Regularity Criteria in Lorentz Spaces for the Three Dimensional Navier-Stokes Equations[J].Acta mathematica scientia,Series A, 2021, 41(5): 1396-1404.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 |
Serrin J . On the interior regularity of weak solutions of the Navier-Stokes equations. Arch Ration Mech Anal, 1962, 9, 187- 195
doi: 10.1007/BF00253344 |
2 |
Bae H , Choe H . A regularity criterion for the Navier-Stokes equations. Comm Partial Differential Equations, 2007, 32, 1173- 1187
doi: 10.1080/03605300701257500 |
3 |
Bae H , Wolf J . A local regularity condition involving two velocity components of Serrin-type for the Navier-Stokes equations. C R Math Acad Sci Paris, 2016, 354, 167- 174
doi: 10.1016/j.crma.2015.10.020 |
4 | Beirao da Veiga H . A new regularity class for the Navier-Stokes equations in $ {\mathbb R}.{n} $. Chinese Annals of Mathematics Series B, 1995, 16, 407- 412 |
5 | Berselli L , Manfrin R . On a theorem by Sohr for the Navier-Stokes equations. J Evol Equa, 2004, 4, 193- 211 |
6 |
Bosia S , Pata V , Robinson J . A weak-$ L.p $ Prodi-Serrint type regularity criterion for the Navier-Stokes equations. J Math Fluid Mech, 2014, 16, 721- 725
doi: 10.1007/s00021-014-0182-5 |
7 |
Chae D , Choe H . Regularity of solutions to the Navier-Stokes equation. Electron J Differential Equations, 1999, 5, 1- 7
doi: 10.1080/10236199908808167 |
8 |
Chen Q , Zhang Z . Regularity criterion via two components of vorticity on weak solutions to the Navier-Stokes equations in $ {\mathbb R}.{3} $. J Differential Equations, 2005, 216, 470- 481
doi: 10.1016/j.jde.2005.06.001 |
9 |
Chen Z , Price W . Blow-up rate estimates for weak solutions of the Navier-Stokes equations. R Soc Lond Proc Ser A Math Phys Eng Sci, 2001, 457, 2625- 2642
doi: 10.1098/rspa.2001.0854 |
10 |
Dong B , Chen Z . Regularity criterion of weak solutions to the 3D Navier-Stokes equations via two velocity components. J Math Anal Appl, 2008, 338, 1- 10
doi: 10.1016/j.jmaa.2007.05.003 |
11 |
Ji X , Wang Y , Wei W . New regularity criteria based on pressure or gradient of velocity in Lorentz spaces for the 3D Navier-Stokes equations. J Math Fluid Mech, 2020, 22 (1): Artcile 13
doi: 10.1007/s00021-019-0476-8 |
12 |
Jia X , Zhou Y . Ladyzhenskaya-Prodi-Serrin type regularity criteria for the 3D incompressible MHD equations in terms of $ 3\times3 $ mixture matrices. Nonlinearity, 2015, 28, 3289- 3307
doi: 10.1088/0951-7715/28/9/3289 |
13 | Kim H , Kozono H . Interior regularity criteria in weak spaces for the Navier-Stokes equations. Manuscripta Math, 2004, 115, 85- 100 |
14 | Takahashi S . On interior regularity criteria for weak solutions of the Navier-Stokes equations. Manuscripta Math, 1990, 69, 237- 254 |
15 |
Wang W , Zhang Z . On the interior regularity criteria and the number of singular points to the Navier-Stokes equations. J Anal Math, 2014, 123, 139- 170
doi: 10.1007/s11854-014-0016-7 |
16 | Wang W , Zhang L , Zhang Z . On the interior regularity criteria of the 3-D Navier-Stokes equations involving two velocity components. Discrete Contin Dyn Syst, 2018, 38, 2609- 2627 |
17 | Wang Y, Wei W, Yu H. $ \varepsilon $-regularity criteria in Lorentz spaces to the 3D Navier-Stokes equations. 2019, arXiv: 1909.09957 |
18 |
Wang Y , Wu G , Zhou D . Some interior regularity criteria involving two components for weak solutions to the 3D Navier-Stokes equations. J Math Fluid Mech, 2018, 20, 2147- 2159
doi: 10.1007/s00021-018-0402-5 |
19 | Löfström J . Interpolation Spaces. Berlin: Springer-Verlag, 1976 |
20 | Grafakos L . Classical Fourier Analysis. New York: Springer, 2014 |
21 |
Leray J . Sur le mouvement déun liquide visqueux emplissant léspace. Acta Math, 1934, 63, 193- 248
doi: 10.1007/BF02547354 |
22 | Malý J. Advanced theory of differentiation-Lorentz spaces. 2003. http://www.karlin.mff.cuni.cz/~maly/lorentz.pdf |
23 | He C , Wang Y . On the regularity criteria for weak solutions to the magnetohydrodynamic equations. J Differential Equations, 2007, 238, 1- 17 |
24 | Sohr H . A regularity class for the Navier-Stokes equations in Lorentz spaces. J Evol Equa, 2001, 1, 441- 467 |
25 |
He C , Wang Y . Limiting case for the regularity criterion of the Navier-Stokes equations and the magnetohydrodynamic equations. Sci China Math, 2010, 53, 1767- 1774
doi: 10.1007/s11425-010-3135-3 |
26 | O'Neil R . Convolution operators and $ L.{p, q} $ spaces. Duke Math J, 1963, 30, 129- 142 |
27 | Tartar L . Imbedding theorems of Sobolev spaces into Lorentz spaces. Boll Unione Mat Ital Sez B Artic Ric Mat, 1998, 1, 479- 500 |
28 | Carrillo J , Ferreira L . Self-similar solutions and large time asymptotics for the dissipative quasi-geostrophic equation. Monatsh Math, 2007, 151, 111- 142 |
[1] | Zou Weilin, Ren Yuanchun, Xiao Meipin. Regularizing Effect of L1 Interplay Between Coefficients in Nonlinear Degenerate Elliptic Equations [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1405-1414. |
[2] | Xinyi Feng,Xiangkai Sun. Characterizations of Farkas Lemmas for a Class of Fractional Optimization with DC Functions [J]. Acta mathematica scientia,Series A, 2021, 41(3): 827-836. |
[3] | Penghong Zhong,Xingfa Chen. Global Smoothness of the Plane Wave Solutions for Landau-Lifshitz Equation [J]. Acta mathematica scientia,Series A, 2021, 41(3): 729-739. |
[4] | Mingyue Xu,Caidi Zhao,Caraballo Tomás. Degenerate Regularity of Trajectory Statistical Solutions for the 3D Incompressible Navier-Stokes Equations [J]. Acta mathematica scientia,Series A, 2021, 41(2): 336-344. |
[5] | Jiao Luo,Qian Qi,Hong Luo. Weak Solutions to Higher-Order Anisotropic Cahn-Hilliard-Navier-Stokes Systems [J]. Acta mathematica scientia,Series A, 2020, 40(6): 1599-1611. |
[6] | Liping Liu,Hang Yang,Xuan Ma. The Landau Equation with Inflow Boundary Condition in a Finite Channel [J]. Acta mathematica scientia,Series A, 2020, 40(4): 904-917. |
[7] | Qiang Li. Global Regularity for the 3D Liquid Crystal Equations with Fractional Diffusion [J]. Acta mathematica scientia,Series A, 2020, 40(4): 918-924. |
[8] | Cuixia Li,Shiliang Wu. On the Sole Solvability of General Absolute Value Equation [J]. Acta mathematica scientia,Series A, 2020, 40(1): 44-48. |
[9] | Jianhua Huang,Zaiyun Zhang,Yong Chen. The Moderate Deviation Principle for Stochastic 3D LANS-α Model Driven by Multiplicative Lévy Noise [J]. Acta mathematica scientia,Series A, 2019, 39(6): 1532-1544. |
[10] | Hui Zhang,Juan Xu. Regularity Criteria for the NS and MHD Equations in Terms of Horizontal Components [J]. Acta mathematica scientia,Series A, 2019, 39(5): 1136-1145. |
[11] | Qiuyue Zhang. Global Regularity for 3D Generalized Oldroyd-B Type Models with Fractional Dissipation [J]. Acta mathematica scientia,Series A, 2019, 39(5): 1125-1135. |
[12] | Kai Li,Han Yang,Fan Wang. Study on Weak Solution and Strong Solution of Incompressible MHD Equations with Damping in Three-Dimensional Systems [J]. Acta mathematica scientia,Series A, 2019, 39(3): 518-528. |
[13] | Zhongqing Li,Wenjie Gao. Bounded Weak Solutions to an Elliptic Equation with Lower Order Terms and Degenerate Coercivity [J]. Acta mathematica scientia,Series A, 2019, 39(3): 529-534. |
[14] | Hua Qiu,Changping Xie,Shaomei Fang. Remarks on Regularity Criteria for 3D Generalized MHD Equations and Boussinesq Equations [J]. Acta mathematica scientia,Series A, 2019, 39(2): 316-328. |
[15] | Didi Hu,Xuan Wang. The Strong Time-Dependent Global Attractors for the Non-Damping Abstract Evolution Equations with Fading Memory [J]. Acta mathematica scientia,Series A, 2019, 39(1): 81-94. |
|