1 |
Fabrie P , Gallouët T . Modelling wells in porous media flows. Math Models Methods Appl Sci, 2000, 10, 673- 709
doi: 10.1142/S0218202500000367
|
2 |
Rakotoson J M . Existence of bounded of some degenerate quasilinear elliptic equations. Comm Partial Differential Equations, 1987, 12 (6): 633- 676
doi: 10.1080/03605308708820505
|
3 |
Giachetti D , Maroscia G . Existence results for a class of porous medium type equations with a quadratic gradient term. J Evol Equ, 2008, 8, 155- 188
doi: 10.1007/s00028-007-0362-3
|
4 |
Fang Z , Li G . Extinction and decay estimates of solutions for a class of doubly degenerate equations. Applied Mathematics Letters, 2012, 25 (11): 1795- 1802
doi: 10.1016/j.aml.2012.02.020
|
5 |
Vázquez J L . The Porous Medium Equation. Mathematical Theory. Oxford: Oxford Univ Press, 2007
|
6 |
Li F Q . Some nonlinear elliptic systems with right-hand side integrable data with respect to the distance to the boundary. Science China Mathematics, 2014, 57 (9): 1891- 1910
doi: 10.1007/s11425-014-4795-1
|
7 |
Yin J X , Wang L W , Huang R . Complexity of asymptotic behavior of solutions for the porous medium equation with absorption. Acta Mathematica Scientia, 2010, 30B (6): 1865- 1880
|
8 |
Wu X L , Gao W J . Blow-up of the Solution for a class of porous medium equation with positive initial energy. Acta Math Sci, 2013, 33B (4): 1024- 1030
|
9 |
Liu D M , Mu C L , Xin Q . Lower bounds estimate for the blow-up time of a nonlinear nonlocal porous medium equation. Acta Math Sci, 2012, 32B (3): 1206- 1212
|
10 |
Li F C , Xie C H . Global existence and blow-up for a nonlinear porous medium equation. Appl Math Lett, 2003, 16, 185- 192
doi: 10.1016/S0893-9659(03)80030-7
|
11 |
Wang J , Wang Z J , Yin J X . A class of degenerate diffusion equations with mixed boundary conditions. J Math Anal Appl, 2004, 298 (2): 589- 603
doi: 10.1016/j.jmaa.2004.05.028
|
12 |
Boccardo L , Segura de León S , Trombettic C . Bounded and unbounded solutions for a class of quasi-linear elliptic problems with a quadratic gradient term. J Math Pures Appl, 2001, 80 (9): 919- 940
doi: 10.1016/S0021-7824(01)01211-9
|
13 |
Dall'Aglio A , Giachetti D , Leone C , León S . Quasi-linear parabolic equations with degenerate coercivity having a quadratic gradient term. Ann Inst H Poincaré Anal Nonlinéaire, 2006, 23, 97- 126
doi: 10.1016/j.anihpc.2005.02.006
|
14 |
Ferone V , Posteraro M R , Rakotoson J M .   -estimates for nonlinear elliptic problems with -growth in the gradient. J Inequal Appl, 1999, 3 (2): 109- 125
|
15 |
Arcoya D , Boccardo L . Regularizing effect of the interplay between coefficients in some elliptic equations. J Funct Anal, 2015, 268 (5): 1153- 1166
doi: 10.1016/j.jfa.2014.11.011
|
16 |
Arcoya D , Boccardo L . Regularizing effect of   interplay between coefficients in some elliptic equations. J Math Pures Appl, 2018, 111, 106- 125
doi: 10.1016/j.matpur.2017.08.001
|
17 |
Li Z Q . Existence result to a parabolic equation with quadratic gradient term and an   source. Acta Applicandae Mathematicae, 2019, 163 (1): 145- 156
doi: 10.1007/s10440-018-0217-7
|
18 |
Moreno M L . A quasilinear Dirichlet problem with quadratic growth respect to the gradient and   data. Nonlinear Anal, 2014, 95, 450- 459
doi: 10.1016/j.na.2013.09.014
|
19 |
Alvino A , Boccardo L , Ferone V , et al. Existence results for nonlinear elliptic equations with degenerate coercivity. Ann Mat Pura Appl, 2003, 182 (4): 53- 79
|
20 |
Zheng J , Tavares L S . The obstacle problem for nonlinear noncoercive elliptic equations with   -data. Journal of Inequalities and Applications, 2019, 205, 1- 15
|
21 |
Chlebicka I. Regularizing effect of the lower-order terms in elliptic problems with Orlicz growth. 2019, arXiv: 1902.05314
|
22 |
李仲庆, 高文杰. 一类具低阶项和退化强制的椭圆方程的有界弱解. 数学物理学报, 2019, 39A (3): 529- 534
doi: 10.3969/j.issn.1003-3998.2019.03.012
|
|
Li Z Q , Gao W J . Bounded weak solutions to an elliptic equation with lower order terms and degenerate coercivity. Acta Math Sci, 2019, 39A (3): 529- 534
doi: 10.3969/j.issn.1003-3998.2019.03.012
|
23 |
Lions J L . Quelques Méthodes de Résolution des Problèmes aux Limites Nonlinéaires. Paris: Dunod Gauthier-Villars, 1969
|
24 |
Boccardo L , Murat F , Puel J P . Existence of bounded solutions for nonlinear elliptic unilateral problems. Ann Mat Pura Appl, 1988, 152 (4): 183- 196
|