Acta mathematica scientia,Series A ›› 2021, Vol. 41 ›› Issue (5): 1382-1395.
Previous Articles Next Articles
Received:
2020-03-24
Online:
2021-10-26
Published:
2021-10-08
Contact:
Zuodong Yang
E-mail:jin@263.net
Supported by:
CLC Number:
Zhe Jia,Zuodong Yang. Global Boundedness in a Chemotaxis-Haptotaxis Model with Nonlinear Diffusion and Signal Production[J].Acta mathematica scientia,Series A, 2021, 41(5): 1382-1395.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 |
Winkler M . Does a 'volume-filling effect' always prevent chemotactic collapse?. Math Methods Appl Sci, 2010, 33, 12- 24
doi: 10.1002/mma.1146 |
2 |
Tao Y , Winkler M . Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity. J Differential Equations, 2012, 252, 692- 715
doi: 10.1016/j.jde.2011.08.019 |
3 |
Ishida S , Seki K , Yokota T . Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains. J Differential Equations, 2014, 256, 2993- 3010
doi: 10.1016/j.jde.2014.01.028 |
4 |
CieśLak T , Stinner C . New critical exponents in a fully parabolic quasilinear Keller-Segel and applications to volume filling models. J Differential Equations, 2015, 258, 2080- 2113
doi: 10.1016/j.jde.2014.12.004 |
5 |
Zheng J . Boundedness of solutions to a quasilinear parabolic-parabolic Keller-Segel system with a logistic source. J Math Anal Appl, 2015, 431, 867- 888
doi: 10.1016/j.jmaa.2015.05.071 |
6 |
Tao X , Zhou A , Ding M . Boundedness of solutions to a quasilinear parabolic-parabolic chemotaxis model with nonlinear signal production. J Math Anal Appl, 2019, 474, 733- 747
doi: 10.1016/j.jmaa.2019.01.076 |
7 |
Ding M , Wang W , Zhou S , Zheng S . Asymptotic stability in a fully parabolic quasilinear chemotaxis model with general logistic source and signal production. J Differential Equations, 2020, 268 (11): 6729- 6777
doi: 10.1016/j.jde.2019.11.052 |
8 |
Winkler M . Finite-time blow-up in low-dimensional Keller-Segel systems with logistic-type superlinear degradation. Z Angew Math Phys, 2018, 69, 40
doi: 10.1007/s00033-018-0935-8 |
9 |
Cieslak T , Stinner C . Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions. J Differential Equations, 2012, 252, 5832- 5851
doi: 10.1016/j.jde.2012.01.045 |
10 |
Cieslak T , Winkler M . Finite-time blow-up in a quasilinear system of chemotaxis. Nonlinearity, 2008, 21, 1057- 1076
doi: 10.1088/0951-7715/21/5/009 |
11 | Herrero M , Velázquez J . A blow-up mechanism for a chemotaxis model. Ann Sc Norm Super Pisa Cl Sci, 1997, 24 (4): 633- 683 |
12 | Nagai T . Blow-up of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains. J Inequal Appl, 2001, 6, 37- 55 |
13 |
Osaki K , Tsujikawa T , Yagi A , Mimura M . Exponential attractor for a chemotaxis-growth system of equations. Nonlinear Anal, 2002, 51, 119- 144
doi: 10.1016/S0362-546X(01)00815-X |
14 | Painter K J , Hillen T . Volume-filling and quorum-sensing in models for chemosensitive movement. Can Appl Math Q, 2002, 10, 501- 543 |
15 | Wang L , Li Y , Mu C . Boundedness in a parabolic-parabolic quasilinear chemotaxis system with logistic source. Discrete Contin Dyn Syst Ser A, 2014, 34, 789- 802 |
16 |
Winkler M . Chemotaxis with logistic source: very weak global solutions and their boundedness properties. J Math Anal Appl, 2008, 348, 708- 729
doi: 10.1016/j.jmaa.2008.07.071 |
17 |
Winkler M . Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source. Comm Partial Differ Equ, 2010, 35, 1516- 1537
doi: 10.1080/03605300903473426 |
18 |
Winkler M . Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction. J Math Anal Appl, 2011, 384, 261- 272
doi: 10.1016/j.jmaa.2011.05.057 |
19 |
Zhuang M , Wang W , Zheng S . Boundedness in a fully parabolic chemotaxis system with logistic-type source and nonlinear production. Nonlinear Analysis: Real World Appl, 2019, 47, 473- 483
doi: 10.1016/j.nonrwa.2018.12.001 |
20 |
Zeng Y . Existence of global bounded classical solution to a quasilinear attraction-repulsion chemotaxis system with logistic source. Nonlinear Anal, 2017, 161, 182- 197
doi: 10.1016/j.na.2017.06.003 |
21 |
Ren G , Liu B . Global boundedness and asymptotic behavior in a quasilinear attraction-repulsion chemotaxis model with nonlinear signal production and logistic-type source. Math Models Methods Appl Sci, 2020, 30 (13): 2619- 2689
doi: 10.1142/S0218202520500517 |
22 |
Winkler M . Boundedness and large time behavior in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity. Calc Var Partial Differ Equ, 2015, 54, 3789- 3828
doi: 10.1007/s00526-015-0922-2 |
23 |
Litcanu G , Morales-Rodrigo C . Asymptotic behavior of global solutions to a model of cell invasion. Math Models Methods Appl Sci, 2010, 20 (9): 1721- 1758
doi: 10.1142/S0218202510004775 |
24 |
Marciniak-Czochra A , Ptashnyk M . Boundedness of solutions of a haptotaxis model. Math Models Methods Appl Sci, 2010, 20 (3): 449- 476
doi: 10.1142/S0218202510004301 |
25 | Chaplain M , Lolas G . Mathematical modelling of cancer invasion of tissue: Dynamic heterogeneity. Netw Heterogen Media, 2016, 1, 399- 439 |
26 |
Tao Y , Wang M . Global solution for a chemotactic-haptotactic model of cancer invasion. Nonlinearity, 2008, 21, 2221- 2238
doi: 10.1088/0951-7715/21/10/002 |
27 |
Tao Y . Global existence of classical solutions to a combined chemotaxis-haptotaxis model with logistic source. J Math Anal Appl, 2009, 354, 60- 69
doi: 10.1016/j.jmaa.2008.12.039 |
28 | Tao Y. Boundedness in a two-dimensional chemotaxis-haptotaxis system. 2014, arXiv: 1407.7382 |
29 |
Cao X . Boundedness in a three-dimensional chemotaxis-haptotaxis model. Z Angew Math Phys, 2016, 67, 11
doi: 10.1007/s00033-015-0601-3 |
30 |
Zheng J , Ke Y . Large time behavior of solutions to a fully parabolic chemotaxis-haptotaxis model in $ N $ dimensions. J Differential Equations, 2019, 266, 1969- 2018
doi: 10.1016/j.jde.2018.08.018 |
31 |
Tao Y , winkler M . A chemotaxis-haptotaxis model: the roles of nonlinear diffusion and logistic source. SIAM J Math Anal, 2011, 43, 685- 704
doi: 10.1137/100802943 |
32 |
Li Y , Lankeit J . Boundedness in a chemotaxis-haptotaxis model with nonlinear diffusion. Nonlinearity, 2016, 29, 1564- 1595
doi: 10.1088/0951-7715/29/5/1564 |
33 |
Wang Y . Boundedness in the higher-dimensional chemotaxis-haptotaxis model with nonlinear diffusion. J Differential Equations, 2016, 260, 1975- 1989
doi: 10.1016/j.jde.2015.09.051 |
34 |
Wang Y . Boundedness in a multi-dimensional chemotaxis-haptotaxis model with nonlinear diffusion. Appl Math Lett, 2016, 59, 122- 126
doi: 10.1016/j.aml.2016.03.019 |
35 | Zheng P , Mu C , Song X . On the boundedness and decay of solutions for a chemotaxis-haptotaxis system with nonlinear diffusion. Discrete Contin Dyn Syst Ser A, 2016, 36, 1737- 1757 |
36 |
Liu L , Zheng J , Li Y , Yan W . A new (and optimal) result for boundedness of solution of a quasilinear chemotaxis-haptotaxis model (with logistic source). J Math Anal Appl, 2020, 491, 124231
doi: 10.1016/j.jmaa.2020.124231 |
37 | Jin C . Boundedness and global solvability to a chemotaxis-haptotaxis model with slow and fast diffusion. Discrete Contin Dyn Syst Ser B, 2018, 23 (4): 1675- 1688 |
38 |
Liu J , Zheng J , Wang Y . Boundedness in a quasilinear chemotaxis-haptotaxis system with logistic source. Z Angew Math Phys, 2016, 67, 21
doi: 10.1007/s00033-016-0620-8 |
39 |
Xu H , Zhang L , Jin C . Global solvability and large time behavior to a chemotaxis-haptotaxis model with nonlinear diffusion. Nonlinear Anal: Real World Appl, 2019, 46, 238- 256
doi: 10.1016/j.nonrwa.2018.09.019 |
40 |
Dai F , Liu B . Asymptotic stability in a quasilinear chemotaxis-haptotaxis model with general logistic source and nonlinear signal production. J Differential Equations, 2020, 269, 10839- 10918
doi: 10.1016/j.jde.2020.07.027 |
41 |
Winkler M . Aggregation vs global diffusive behavior in the higher-dimensional Keller-Segel model. J Differential Equations, 2010, 248, 2889- 2905
doi: 10.1016/j.jde.2010.02.008 |
42 |
Jin C . Global classical solution and boundedness to a chemotaxis-haptotaxis model with re-establishment mechanisms. Bull Lond Math Soc, 2018, 50, 598- 618
doi: 10.1112/blms.12160 |
[1] | Juan Wang,Zixia Yuan. Global Existence and Convergence of Solutions to a Chemotactic Model with Logarithmic Sensitivity and Mixed Boundary Conditions [J]. Acta mathematica scientia,Series A, 2020, 40(6): 1646-1669. |
[2] | Pengcheng Tang,Si Xu,Xuejun Zhang. Bergman Type Operators on Logarithmic Weight General Function Spaces in Cn [J]. Acta mathematica scientia,Series A, 2020, 40(5): 1151-1162. |
[3] | Xiaoli Han. Multiple Pertubations to a Quasilinear Schrödinger Equation [J]. Acta mathematica scientia,Series A, 2020, 40(4): 869-881. |
[4] | Yaoyao Han,Kai Zhao. Boundedness of Marcinkiewicz Integral and Its Commutator on Non-Homogeneous Metric Measure Spaces [J]. Acta mathematica scientia,Series A, 2020, 40(3): 597-610. |
[5] | Si Xu,Xuejun Zhang. Weighted Composition Operator on the Normal Weight Zygmund Space in the Unit Ball [J]. Acta mathematica scientia,Series A, 2020, 40(2): 288-303. |
[6] | Limin Zhang,Haiyan Xu,Chunhua Jin. Global Existence and Stability to a Prey-Taxis Model with Porous Medium Diffusion and Indirect Signal Production [J]. Acta mathematica scientia,Series A, 2019, 39(6): 1381-1404. |
[7] | Jie Wu,Hongxia Lin. The Global Solution and Asymptotic Behavior of Parabolic-Parabolic Keller-Segel Type Model [J]. Acta mathematica scientia,Series A, 2019, 39(5): 1102-1114. |
[8] | Penghong Zhong,Ganshan Yang,Xuan Ma. Global Existence and Self-Similar Blowup of Landau-Lifshitz-Gilbert Equation on Hyperbolic Space [J]. Acta mathematica scientia,Series A, 2019, 39(3): 461-474. |
[9] | Yingjie Fu,Guijie Lan,Shuwen Zhang,Chunjin Wei. Dynamics of a Stochastic Predator-Prey Model with Pulse Input in a Polluted Environment [J]. Acta mathematica scientia,Series A, 2019, 39(3): 674-688. |
[10] | Xueping Luo, Mengtian Cui. Solvability of Directional Perturbed Generalized Mixed Variational Inequalities in Reflexive Banach Spaces [J]. Acta mathematica scientia,Series A, 2018, 38(6): 1144-1152. |
[11] | Yuting Guo,Qingli Shang,Xuejun Zhang. The Pointwise Multiplier on the Normal Weight Zygmund Space in the Unit Ball [J]. Acta mathematica scientia,Series A, 2018, 38(6): 1041-1048. |
[12] | Wang Wansheng, Zhong Peng, Zhao Xinyang. Long-Time Stability of Nonlinear Neutral Differential Equations with Variable Delay [J]. Acta mathematica scientia,Series A, 2018, 38(1): 96-109. |
[13] | Su Xiao, Wang Shubin. Finite Time Blow-Up for the Damped Semilinear Wave Equations with Arbitrary Positive Initial Energy [J]. Acta mathematica scientia,Series A, 2017, 37(6): 1085-1093. |
[14] | Gao Hongya, Jia Miaomiao. Local Regularity and Local Boundedness for Solutions to Obstacle Problems [J]. Acta mathematica scientia,Series A, 2017, 37(4): 706-713. |
[15] | Qiu Hua, Zhang Yingshu, Fang Shaomei. The Global Existence Result of a Leray-α-Oldroyd Model to the Incompressible Viscoelastic Flow [J]. Acta mathematica scientia,Series A, 2017, 37(1): 102-112. |
|