Acta mathematica scientia,Series A ›› 2021, Vol. 41 ›› Issue (5): 1372-1381.
Previous Articles Next Articles
Baiping Ouyang1,*(),Shengzhong Xiao2()
Received:
2021-01-11
Online:
2021-10-26
Published:
2021-10-08
Contact:
Baiping Ouyang
E-mail:oytengfei79@tom.com;1246683963@qq.com
Supported by:
CLC Number:
Baiping Ouyang,Shengzhong Xiao. Nonexistence of Global Solutions for a Semilinear Double-Wave Equation with a Nonlinear Memory Term[J].Acta mathematica scientia,Series A, 2021, 41(5): 1372-1381.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | Chen W, Palmieri A. Blow-up Result for a Semilinear Wave Equation with a Nonlinear Memory Term//Cicognani M, Santo D, Parmeggiani A, Reissig M. Anomalies in Partial Differential Equations. Switzerland: Springer, 2021: 77-97 |
2 |
John F . Blow-up of solutions of nonlinear wave equations in three space dimensions. Manuscripta Math, 1979, 28, 235- 268
doi: 10.1007/BF01647974 |
3 |
Kato T . Blow-up of solutions of some nonlinear hyperbolic equations. Comm Pure Appl Math, 1980, 33, 501- 505
doi: 10.1002/cpa.3160330403 |
4 |
Strauss W A . Nonlinear scattering theory at low energy. J Functional Analysis, 1981, 41, 110- 133
doi: 10.1016/0022-1236(81)90063-X |
5 |
Glassey R T . Existence in the large for $ \Box u = F(u) $ in two space dimensions. Math Z, 1981, 178, 233- 261
doi: 10.1007/BF01262042 |
6 |
Glassey R T . Finite-time blow-up for solutions of nonlinear wave equations. Math Z, 1981, 177, 323- 340
doi: 10.1007/BF01162066 |
7 |
Sideris T C . Nonexistence of global solutions to semilinear wave equations in high dimensions. J Differential Equations, 1984, 52, 378- 406
doi: 10.1016/0022-0396(84)90169-4 |
8 |
Schaeffer J . The equation $ u_{tt}-\Delta u = |u|.p $ for the critical value of $ p $. Proc Roy Soc Edinburgh Sect A, 1985, 101, 31- 44
doi: 10.1017/S0308210500026135 |
9 |
Chen W . Interplay effects on blow-up of weakly coupled systems for semilinear wave equations with general nonlinear memory terms. Nonlinear Anal, 2021, 202, 112160
doi: 10.1016/j.na.2020.112160 |
10 |
Chen W , Palmieri A . Nonexistence of global solutions for the semilinear Moore-Gibson-Thompson equation in the conservative case. Discrete Contin Dyn Syst, 2020, 40, 5513- 5540
doi: 10.3934/dcds.2020236 |
11 |
Chen W , Reissig M . Blow-up of solutions to Nakao's problem via an iteration argument. J Differential Equations, 2021, 275, 733- 756
doi: 10.1016/j.jde.2020.11.009 |
12 |
Chen W , Palmieri A . A blow-up result for the semilinear Moore-Gibson-Thompson equation with nonlinearity of derivative type in the conservative case. Evol Equa Control Theory, 2020,
doi: 10.3934/eect.2020085 |
13 | Lai N A , Takamura H . Nonexistence of global solutions of nonlinear wave equations with weak time-dependent damping related to Glassey's conjecture. Differ Integral Equa, 2019, 32, 37- 48 |
14 |
Lai N A , Takamura H , Wakasa K . Blow-up for semilinear wave equations with the scale invariant damping and super-Fujita exponent. J Differential Equations, 2017, 263, 5377- 5394
doi: 10.1016/j.jde.2017.06.017 |
15 |
Palmieri A , Takamura A . Blow-up for a weekly coupled system of semilinear damped wave equations in the scattering case with power nonlinearities. Nonlinear Anal, 2019, 187, 467- 492
doi: 10.1016/j.na.2019.06.016 |
16 | Palmieri A, Takamura H. Nonexistence of global solutions for a weakly coupled system of semilinear damped wave equations in the scattering case with mixed nonlinear terms. 2019, arXiv: 1901.04038 |
17 |
Liu Y . Blow-up phenomena for the nonlinear nonlocal porous medium equation under Robin boundary condition. Comput Math Appl, 2013, 66, 2092- 2095
doi: 10.1016/j.camwa.2013.08.024 |
18 |
Li Y , Liu Y , Lin C . Blow-up phenomena for some nonlinear parabolic problems under mixed boundary conditions. Nonlinear Anal-Real, 2010, 11, 3815- 3823
doi: 10.1016/j.nonrwa.2010.02.011 |
19 |
Liu Y , Luo S , Ye Y . Blow-up phenomena for a parabolic problem with a gradient nonlinearity under nonlinear boundary conditions. Comput Math Appl, 2013, 65, 1194- 1199
doi: 10.1016/j.camwa.2013.02.014 |
20 |
Chen W , Liu Y . Lower bound for the blow-up time for some nonlinear parabolic equations. Bound Value Probl, 2016, 2016, 161
doi: 10.1186/s13661-016-0669-5 |
21 |
Fang Z , Wang Y . Blow-up analysis for a semi-linear parabolic equation with time-dependent coefficients under nonlinear boundary flux. Z Angew Math Phys, 2015, 66, 1- 17
doi: 10.1007/s00033-013-0377-2 |
22 |
Tao X , Fang Z . Blow-up phenomena for a nonlinear reaction diffusion system with time dependent coefficients. Comput Math Appl, 2017, 74, 2520- 2528
doi: 10.1016/j.camwa.2017.07.037 |
23 |
Ma L , Fang Z . Blow-up phenomena of solutions for a reaction-diffusion equation with weighted exponential nonlinearity. Comput Math Appl, 2018, 75, 2735- 2745
doi: 10.1016/j.camwa.2018.01.005 |
24 |
Liu Z , Fang Z . Blow-up phenomena for a nonlocal quasilinear parabolic problem equation with time-dependent coefficients under nonlinear boundary flux. Discrete Contin Dyn Syst Ser, 2016, 21, 3619- 3635
doi: 10.3934/dcdsb.2016113 |
25 |
Ma L , Fang Z . Blow-up phenomena for a semilinear parabolic equation with weighted with inner absorption under nonlinear boundary flux. Math Meth Appl Sci, 2017, 40, 115- 128
doi: 10.1002/mma.3971 |
26 | Zheng Y , Fang Z . Blow-up analysis for a weakly coupled reaction-diffusion system with gradient sources terms and time-dependent coefficients(in Chinese). Acta Mathematica Scientia, 2020, 40A (3): 735- 755 |
27 |
Liu Y , Jiang D , Yamamoto M . Inverse source problem for a double hyperbolic equation describing the three-dimensional time cone model. SIAM J Appl Math, 2015, 75, 2610- 2635
doi: 10.1137/15M1018836 |
28 |
D'Abbicco M , Jannelli E . Dissipative higher order hyperbolic equations. Commum Part Diff Equations, 2017, 42, 1682- 1706
doi: 10.1080/03605302.2017.1390674 |
29 |
Chen W , Reissig M . Weakly coupled systems of semilinear elastic waves with different damping mechanisms in 3D. Mathematical Methods in the Applied Sciences, 2019, 42, 667- 709
doi: 10.1002/mma.5370 |
[1] | Jingran He,Helin Guo,Wenqing Wang. A p-Laplace Eigenvalue Problem with Coercive Potentials [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1323-1332. |
[2] | Hui Yang,Yuzhu Han. Blow-Up Properties of Solutions to a Class of Parabolic Type Kirchhoff Equations [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1333-1346. |
[3] | Jinglei Zhao,Jiacheng Lan,Shanshan Yang. Lifespan Estimate of Damped Semilinear Wave Equation in Exterior Domain with Neumann Boundary Condition [J]. Acta mathematica scientia,Series A, 2021, 41(4): 1033-1041. |
[4] | Shoufu Tian. On the Behavior of the Solution of a Weakly Dissipative Modified Two-Component Dullin-Gottwald-Holm System [J]. Acta mathematica scientia,Series A, 2020, 40(5): 1204-1223. |
[5] | Shoujun Huang,Xiwang Meng. Improved Ordinary Differential Inequality and Its Application to Semilinear Wave Equations [J]. Acta mathematica scientia,Series A, 2020, 40(5): 1319-1332. |
[6] | Xiaoli Han. Multiple Pertubations to a Quasilinear Schrödinger Equation [J]. Acta mathematica scientia,Series A, 2020, 40(4): 869-881. |
[7] | Yadong Zheng,Zhongbo Fang. Blow-Up Analysis for a Weakly Coupled Reaction-Diffusion System with Gradient Sources Terms and Time-Dependent Coefficients [J]. Acta mathematica scientia,Series A, 2020, 40(3): 735-755. |
[8] | Danni Ma,Zhongbo Fang. Blow-Up Phenomenon for a Coupled Diffusion System with Exponential Reaction Terms and Space-Dependent Coefficients [J]. Acta mathematica scientia,Series A, 2019, 39(6): 1456-1475. |
[9] | Hongbiao Jiang,Haihang Wang. Lifespan Estimation of Solutions to Cauchy Problem of Semilinear Wave Equation [J]. Acta mathematica scientia,Series A, 2019, 39(5): 1146-1157. |
[10] | Siqian Qin,Zhengqiu Ling,Zewen Zhou. Some Methods for Determining the Lower Bound of Blow-up Time in a Parabolic Problem and Effectiveness Analysis [J]. Acta mathematica scientia,Series A, 2019, 39(5): 1033-1040. |
[11] | Yafeng Li,Qiao Xin,Chunlai Mu. The Discrete Possion Equation and the Heat Equation with the Exponential Nonlinear Term [J]. Acta mathematica scientia,Series A, 2019, 39(4): 773-784. |
[12] | Qunfei Long,Jianqing Chen. Blow-Up Phenomena of Solutions for a Class of Viscous Cahn-Hilliard Equation with Gradient Dependent Potentials and Sources [J]. Acta mathematica scientia,Series A, 2019, 39(3): 510-517. |
[13] | Ting Ji,Lianggen Hu,Jing Zeng. The Non-Existence of Non-Radial Blow-Up Solutions for the Quasilinear Elliptic System [J]. Acta mathematica scientia,Series A, 2019, 39(2): 307-315. |
[14] | Yijun He,Huaihong Gao,Hua Wang,Shunyong Li. A Note on Global Solution and Blow-Up for a Class of Pseudo p-Laplacian Evolution Equations with Logarithmic Nonlinearity [J]. Acta mathematica scientia,Series A, 2019, 39(1): 125-132. |
[15] | Zhaoyang Shang. Blow-Up Criterion for Incompressible Magnetohydrodynamics Equations in Besov Space [J]. Acta mathematica scientia,Series A, 2019, 39(1): 67-80. |
|